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EXECUTIVE SUMMARY

Policymakers have become increasingly sensitive in recent years to differences in socioeconomic
conditions among regions, states, and localities. They have questioned whether the benefits of our
social welfare system are shared equitably, and their concerns have intensified the need for
subnational estimates for indicators of we!l-being and program effectiveness. Such estimates have
been used to identify areas in which program participation falls shortest of need and to target
resources to these areas in efforts to expand participation and improve program effectiveness.
However, although accurate estimates are vital to the success of these efforts, very little is known
about the relative accuracy of alternative estimators used to derive "small area" estimates of program
need and effectiveness.

In this study, we assess the relative accuracy of sample and shrinkage estimates of state poverty
rates. We consider both single sample and pooled sample estimators. The single sample estimator
uses data for one year, and the pooled sample estimator pools data for three consecutive years.
Although sample estimators are commonly used, shrinkage estimators are an attractive alternative.
Shrinkage estimators calculate optimally weighted averages of estimates obtained using other methods,
such as sample estimation and regression estimation. A shrinkage estimator draws on the relative
strengths of the alternative estimates to obtain a better estimate. Recommended by Schirm,
Swearingen, and Hendricks (1992) for estimating state poverty rates, our shrinkage estimator is an
Empirical Bayes estimator that combines single sample and regression estimates. The regression
estimates are obtained using a regression model that predicts state poverty rates based on such state
characteristics as per capita total personal income and the proportion of the state's residents receiving
Supplemental Security Income (SSI).

We use simulation methods to develop sample and shrinkage estimates of state poverty rates and
to compare their relative accuracy. For our simulations, we use the March 1990 CPS sample to
specify a population of individuals whose states of residence and poverty status are known. We
conduct 1,000 iterations of our simulation procedure, drawing 1,000 samples from the population and
calculating sample and shrinkage estimates of state poverty rates for each of the 1,000samples. Then,
we compare the estimates with the "true" state poverty rates in the population and assess the relative
accuracy of the sample and shrinkage estimators.

Our principal finding is that according to a wide variety of accuracy criteria, shrinkage estimates
are substantially more accurate than single or pooled sample estimates. For example, calculating root
mean squared errors (RMSEs) and mean absolute errors (MAEs) for each iteration of our simulation
procedure, we find that there is about a 90 to 95 percent chance that shrinkage will improve accuracy.
The median reduction in the RMSE or MAE is large--about 15 to 20 percent. Shrinkage rarely
decreases accuracy, and even when it does, the loss in accuracy is usually small.

In addition to evaluating the accuracy of the state poverty rate estimates, we assess the accuracy
of estimated standard errors and confidence intervals as expressions of our uncertainty in the poverty
rate estimates. For the pooled sample estimator, we find that the standard errors and the confidence
intervals constructed from them are misleading. The standard errors are too small, and the
confidence intervals are too narrow, underestimating our uncertainty and giving a false sense of
accuracy. In contrast, standard errors and confidence intervals for the single sample and shrinkage
estimators reflect accurately the uncertainty in estimated poverty rates.
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Our simulation results provide strong evidence supporting Schirm, Swearingen, and Hendricks'
(1992) recommendation to use the shrinkage estimator for estimating state poverty rates. Compared
with the single and pooled sample estimators, the shrinkage estimator is almost always more accurate,
and the typical gain in accuracy from shrinkage is substantial.
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I. INTRODUCTION

Policymakers have become increasingly sensitive in recent years to differences in socioeconomic

conditions among regions, states, and localities. They have questioned whether the benefits of our

social welfare system are shared equitably, and their concerns have intensified the need for

subnational estimates for indicators of well-being and program effectiveness. Such estimates can be

used to identify areas in which program participation falls shortest of need and possibly to target

resources to these areas in efforts to expand participation and improve program effectiveness. Such

efforts have been undertaken or are under consideration for the National School Lunch Program

(NSLP), the School Breakfast Program (SBP), the Child and Adult Care Food Program (CACFP),

and the Special Supplemental Food Program for Women, Infants, and Children (WIC).

Although accurate estimates are vital to the success of these efforts, very little is known about

the relative accuracy of alternative estimators used to derive "small area" estimates of program need

and effectiveness (U.S. Office of Management and Budget 1993).1 The leading estimators developed

for small area estimation are (1) sample estimators that derive estimates directly from sample survey

data, (2) model-based estimators that derive estimates using statistical models, and (3) shrinkage

estimators that combine sample and model-based estimates. 2 Schirm, Swearingen, and Hendricks

lA small area does not have to be small or an area. The defining characteristic is a small number
of sample observations--a sufficiently small number that sampling error is high. A demographic group
or a large region of the country could be a small area.

ZEstimators can also be classified as direct or indirect (U.S. Office of Management and Budget
1993). To obtain an estimate for a particular area and a particular time period, a direct estimator
uses only data for that area and time period. An indirect estimator uses data from other areas or
time periods. It "borrows strength" from those other areas or time periods. We examine two sample
estimators in this study. One--the single sample estimator--is a direct estimator, and the other--the
pooled sample estimator--is an indirect estimator. Model-based and shrinkage estimators are indirect
estimators. Although shrinkage estimators are model based, they combine model estimates with
sample estimates, rather than discarding the sample estimates in favor of the model estimates as do
purely model-based estimators. Shrinkage estimators are sometimes called "compromise" or
"composite" estimators.
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(1992) examined estimators of each type and recommended a shrinkage estimator for deriving state

estimates of poverty, Food Stamp Program (FSP) eligibility, and FSP participation.

In this study, we assess the relative accuracy of sample and shrinkage estimates of state poverty

rates. This report documents our methods and findings. In Chapter II, we outline the simulation

methods we use to develop sample and shrinkage estimates of state poverty rates and to compare

their relative accuracy. In Chapter III, we present our simulation results. Our principal finding is

that according to a wide variety of accuracy criteria, shrinkage estimates are substantially more

accurate than sample estimates, regardless of whether the sample estimates are derived from a single

sample or pooled samples. We provide more detailed specifications for our simulation procedure in

Appendix A and additional tables of simulation results in Appendix B. In the remainder of this

chapter, we discuss sample, model-based, and shrinkage estimators and our approach to evaluating

the accuracy of alternative estimates of state poverty rates.

The basic sample estimator derives estimates directly from a single sample survey, such as one

month of the Current Population Survey (CPS) or one wave of a panel of the Survey of Income and

Program Participation (SIPP). Aside from its simplicity, the principal advantage of the sample

estimator is that it is unbiased; that is, sample estimates are correct on average. The main

disadvantage of the sample estimator is that there is often substantial sampling variability in estimates

for small areas. Thus, standard errors of sample estimates are typically large?

A variant of the sample estimator that has been proposed to address the high sampling error

problem is the Hpooled' sample estimator. Pooling combines survey data from different time periods.

Plotnick (1989) and Haveman, Danziger, and Plotnick (1991) derived state poverty rate estimates by

combining CPS samples for three consecutive years and dropping overlapping observations from the

first and third years. This approach appro_dmately doubles sample sizes and, therefore, reduces

3Recently, the Census Bureau began publishing CPS sample estimates of state poverty rates with
the warning that they Hshould be used with caution since ]they have] relatively large standard errors"
(U.S. Department of Commerce 1991a).
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standard errors by nearly 30 percent, n The drawback is that a pooled estimator is biased. A state's

pooled poverty rate for a single year is a weighted average of its poverty rates for three years.

Because poverty rates are surely rising and falling during any three-year period, the pooled estimator

is biased, although the direction of the bias cannot be determined. For estimates of year-to-year

changes in poverty rates, the pooled estimator is biased downward. The pooled estimates for

consecutive years incorporate two overlapping years--the second and third years pooled to obtain the

first estimate are the first and second years pooled to obtain the second estimate--implying that half

of the observations on which each pooled estimate is based consist of the same households whose

incomes are measured at the same point in time. Because of this 50 percent overlap for which no

changes in poverty status can be observed, a comparison of the two pooled poverty estimates will

generally understate the year-to-year change.

Model-based estimation is an alternative to pooling as a way to reduce sampling error. The

regression method is the most commonly used model-based method for small area estimation.

Originally developed by Ericksen (1974), the regression method combines sample data with

symptomatic information, using multivariate regression to "smooth" sample estimates, that is, to reduce

their sampling variability.

The basic regression model for estimating state poverty rates is:

¥::XB.U,

4To reduce the sampling error associated with estimates of change in monthly unemployment
rates (and to reduce data collection costs), the CPS uses a "rotation group" design in which half of
the selected housing units in consecutive annual samples are the same. (For monthly unemployment
estimates, three-quarters of the selected housing units in consecutive monthly samples are the same.)
Thus, it is necessary to pool not two but three annual CPS samples to double (approximately) the
effective sample size. Haft of the housing units in the middle year's sample are in the first year's
sample, and the other half are in the third year's sample. The usual procedure for constructing a
pooled three-year estimate--but an arbitrary choice from among several procedures--is to weight the
middle year twice as heavily as each of the other two years by using all of the sample observations
in the middle year and only the nonoverlapping observations in the first and third years.
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where Ys is a vector of sample estimates of state poverty rates, X is a matrix containing data for each

state on a set of "symptomatic indicatorsf and B is a vector of regression coefficients to be estimated.

U is an error term reflecting both the inability of the symptomatic indicators to explain ali of the

interstate variation in poverty rates and the fact that the sample estimates of poverty rates are subject

to sampling error. The regression estimator is:

(2) ¥, --

where J_ is the least squares estimate of B. In the regression, the state observations are often

weighted by a measure of the reliability of the sample estimates.

Unlike other regression models, the regression model for deriving small area estimates has no

causal interpretation. The variables on the right side of Equation (1) do not cause high or low

poverty rates; instead, they are only statistically associated with high or !ow poverty rates and are

symptomatic of differences among states. Data on symptomatic indicators are typically obtained from

census or administrative records data with little or no sampling variability.

As implied by Equation (2), the regression estimates of state poverty rates are the predicted

values from the regression model, where the predictions are based on the estimated regression

coefficients and the observed values for the symptomatic indicators. Because of regression toward

the mean, the regression estimator is biased, its principal disadvantage?

Except in estimating the regression coefficients, the regression method makes no use of the

sample estimates. Likewise, the sample estimator ignores the systematic relationships among state

.sAs shown by Equation (2), the regression estimates of state poverty rates lie on the estimated
regression line. However, not all and maybe not any of the true poverty rates lie on that line; in
other words, there is not an exact linear relationship between the poverty rates and the symptomatic
indicators. Taking values only from the estimated regression line, the regression estimator smoothes
away not only sampling variability, but also variability from the dispersion of the true state poverty
rates about the regression line. The latter is regression toward the mean. Schirm, Swearingen, and
Hendricks (1992) derive an expression for the bias of the regression estimator.
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poverty rates. In contrast to these estimators, shrinkage estimators seek to use all available

information or, at least, the information that is most relevant and practical to use.

Shrinkage estimators calculate optimally weighted averages of estimates obtained using other

methods, such as sample and regression estimates. A shrinkage estimator draws on the relative

strengths of the alternative estimates to obtain a better estimate. The strength of the direct sample

estimate is unbiasedness, and the strength of the model estimate is low sampling variability. A

shrinkage estimator is biased by design, but such bias is accepted to reduce sampling variability. A

shrinkage estimator optimally combines alternative estimates to minimize an overall measure of error,

like mean squared error (MSE), that reflects both bias and sampling variability. Although a direct

sample estimate may have minimum sampling error among all unbiased estimators, that minimum is

typically large relative to the sampling error of some slightly biased estimator. A shrinkage estimator

may offer much lower sampling error at little cost in terms of bias.

The simplest form of a shrinkage estimator is:

(3) Ye -- aY1 * (1 -a)Y 2,

where ¥c is the shrinkage (compromise) estimator that combines the alternative estimators Yl and

I72,a is the vector of weights on the elements of Y1,(1 - a) is the vector of weights on the elements

of Y2,and 0 < a < 1. To optimally combine alternative estimates, a shrinkage estimator weights the

estimates according to their relative reliability. For example, a highly reliable poverty estimate is

weighted more heavily and contributes more to the combined (shrinkage) poverty estimate than a less

reliable poverty estimate, which is weighted less heavily and contributes less to the combined estimate.

Thus, all else equal, a shrinkage estimator would place a large weight on the sample estimate for a

large state and a small weight on the sample estimate for a small state.

Fay and Herriott (1979) developed a shrinkage estimator that combined sample and regression

estimates of per capita income for small places (population less than 1,000) receiving funds under the

5



General Revenue Sharing Program. The shrinkage estimator used by Schirm, Swearingen, and

Hendricks (1992) also combined sample and regression estimates. Their objective was to develop and

evaluate alternative state estimates of poverty, FSP eligibility, and FSP participation. They assessed

the suitability of three data sources--the census, the CPS, and SIPP-and five small area estimation

methods--sample estimation, regression, the ratio correlation technique, structure preserving

estimation (SPREE), and shrinkage methods. The ratio correlation technique and SPREE are

model-based approaches. Based on theoretical arguments, practical considerations, and their

empirical findings, Schirm, Swearingen, and Hendricks (1992) recommended deriving state estimates

using CPS data and an Empirical Bayes shrinkage estimator first used for small area estimation by

Ericksen and Kadane (1985, 1987).

The main limitation to Schirm, Swearingen, and Hendricks' (1992) evaluation was the lack of a

fully suitable standard by which to judge the accuracy of the estimates they obtained. Although it was

possible to compare estimates of sampling variability, namely, standard errors, the accuracy of the

standard errors was unknown, and they shed no light on the magnitude of biases associated with the

model-based and shrinkage estimators. The specification of a standard of comparison is the principal

design issue for this study.

The fundamental question in evaluating accuracy is: What is the truth? Obviously, we do not

know the truth; otherwise, there would be no estimation problem. Therefore, we are left with two

approaches to discovering the truth. The first approach is to identify estimates that are known to be

highly accurate. Although this may seem equivalent to knowing the truth, it may be that highly

accurate estimates are available periodically, but much less frequently than needed. For example,

although census estimates have little sampling variability even for local areas, they are available only

once every 10 years. For this study, the principal difficulty with using census estimates of state

poverty rates as a standard of comparison is that the nonsampling errors in census estimates are not

6



well-understood, s Because an analysis of such errors and the differences in such errors between

census data and, for example, CPS data is beyond the scope of this study, we reject this first approach

to ascertaining the truth. The second approach is to assume the truth and use simulation methods

to derive alternative estimates under the assumed conditions. This is the approach that we have

taken.

For this study, the assumed truth takes the form of a population of individuals whose states of

residence and poverty status are specified. Our assumed population is based on the March 1990 CPS

sample. Specifically, we take the sample as our population, ignoring the sample weights. We conduct

our simulations by drawing 1,000 samples from the assumed population and calculating sample and

shrinkage estimates of state poverty rates for each of the 1,000 samples. Then, we compare the

estimates with the "true" state poverty rates in the assumed population and assess the relative

accuracy of the sample and shrinkage estimators.

There are two potential hmitations to the simulation approach. The first limitation is that the

assumed truth may not accurately reflect the "real" truth. Because our assumed state poverty rates

are based on a sample, they are probably more variable across states than the true poverty rates.

Even if they are not more variable, our assumed poverty rates are undoubtedly different from the

true poverty rates. Nevertheless, there is no reason to believe that using the true poverty rates would

alter our conclusion that shrinkage estimates are more accurate than sample estimates. The second

potential limitation of the simulation approach is that the sampling and estimation procedures used

in the simulations may not accurately reflect the procedures that would be used in practice. As we

have designed our simulations, our sampling and estimation procedures would deviate in only two

ways from the procedures that would be used in practice. First, we draw simple random samples from

each state's assumed population rather than attempting to mimic the complex sample design used in

the CPS. Second, because of the simplified approach to sampling, we can use a well-known formula

SEller (1992) discusses some potential sources of nonsampling error that may account for
differences between census and CPS poverty and income estimates for states.

7



to calculate standard errors of sample estimates directly rather than estimating and using generalized

variance functions. Again, although the magnitudes of the effects of shrinkage on accuracy might

change, there is no reason to believe that using a complex sample design would alter our conclusion

that shrinkage estimates are more accurate than sample estimates. With respect to the estimation

of standard errors, Schirm, Swearingen, and Hendricks (1992) showed that even though the standard

errors of the sample estimates must be used to derive the shrinkage estimates, the shrinkage estimates

are not sensitive to even large errors in estimating those standard errors. We discuss these and other

issues related to potential limitations of the simulation approach later in this report.

8



H. STUDY DESIGN: AN OUTLINE OF THE SIMULATION PROCEDURE

In this chapter, we outline our simulation procedure. This procedure has four basic steps: (1)

specify a population, (2) draw multiple samples from the population, (3) calculate sample and

shrinkage estimates, and (4) compare the relative accuracy of the sample and shrinkage estimates.

These four steps are described in the first four sections of this chapter. In the fifth section, we

describe the additions to each step required to obtain pooled sample estimates. We provide more

detailed specifications for our simulation procedure in Appendix A.

A. STEP 1: SPECIFY A POPULATION

We use the March 1990 CPS sample as the population, ignoring the weights on observations and

excluding unrelated individuals under age 15. This gives a total population size of approximately

158,000 individuals and state populations ranging from under 1,300 to over 14,000 across the 51 states

(the 50 states and the District of Columbia). We specify the poverty status of each individual in the

population using nearly the same definition employed by the Census Bureau in deriving poverty

estimates from the CPS. The only difference between our definition and the Census Bureau's is

minor. Instead of the poverty guidelines based on family size, number of children, and age of the

family householder that are used for official government poverty estimates, we use the simplified

guidelines based on family size that are used for determining eligibility for several federal programs.

B. STEP 2' DRAW MULTIPLE SAMPLES FROM THE POPULATION

In the second step of our simulation procedure, we draw multiple samples from the population

specified in the first step. The purpose in drawing multiple samples is to determine how sampling

variability contributes to the inaccuracy of sample and shrinkage estimates. If we drew only a single

sample and discovered that the shrinkage estimates were far more accurate than the sample estimates,



we could not be sure whether the shrinkage estimator is superior or whether we had drawn an

unusual sample for which the sample estimator performed unusually poorly.

Step 2 of our simulation procedure has three pans. In the first, we specify our sample design.

1. Step 2a: Calculate the Sample Size for State i, i = 1, 2, ..., 51

Replicating the complex CPS sample design in our simulations is well beyond the scope of this

study. Nevertheless, we specify a sampling procedure that replicates the pattern of sampling errors

found in the CPS. Specifically, we draw samples to ensure that the standard errors of the sample

estimates in our simulations will generally equal or be very close to the standard errors for weighted

CPS poverty rate estimates. These latter standard errors reflect the complex CPS sample design.

To simplify the simulation procedure, we use stratified simple random sampling, stratifying only

by state. Given this basic sample design, the sole remaining issue is to 'specify the sample size for

each state, that is, the number of individuals to be selected. Our expression for calculating the

sample size for state i, which we derive in Appendix A, is:

ri + (1 -p )l
(1) /'ti =

ri si2 * Pi (1 -Pi)

For the simulations, we set si equal to the standard error of the weighted CPS poverty rate estimate

for state i. Ti is the population size, and Pi is the poverty rate (expressed as a proportion) in the

population specified in Step 1. This Pi is the _true" poverty rate for state i in our simulations. As we

show in Appendix A, the estimated standard error for a sample estimate for state i in our simulations

will generally equal or be very close to si. Thus, the pattern of standard errors for samples estimates

implied by our simple sample design is similar to the pattern of standard errors implied by the

complex CPS sample design. State sample sizes in our simulations range from about 220 to over

2,200.

10



2. Step 2b: Draw, Without Replacement, a Simple Random Sample of Size ni for State i,
i- 1, 2,..,51

The 51 state samples constitute a single national sample (henceforth, a "sample"). That sample

is a stratified simple random sample. Individuals in the population are stratified by state, and

independent simple random samples of individuals are drawn in each state.

3. Step 2c: Draw 1,000 Samples

We repeat Step 2b 1,000 times, drawing 1,000 independent samples. Each of the 1,000

repetitions of our simulation procedure beginning with the drawing of a sample (Step 2b) and ending

with the calculation of sample and shrinkage estimates (Step 3) is an "iteration."

C. STEP 3: CALCULATE SAMPLE AND SHRINKAGE ESTIMATES

Not counting the pooled sample estimates discussed in Section E, we calculate 1,000 sets of

sample and shrinkage estimates of state poverty rates, one set of 51 sample estimates and one set of

51 shrinkage estimates per iteration. To derive shrinkage estimates, we use an Empirical Bayes

shrinkage estimator that combines sample and regression estimates. This estimator was used by

Schirm, Swearingen, and Hendricks (1992) to derive state estimates of poverty, FSP eligibility, and

FSP participation. Prior to calculating shrinkage estimates, we must calculate sample estimates and

their standard errors and specify the regression model to be used.

1. Step 3a: Calculate the Sample Estimates

For state i, the sample estimate of the proportion poor is the number of individuals in the sample

who are poor divided by the sample size, ni. Expressed as a percentage, the poverty rate is the

proportion poor multiplied by 100. We calculate standard errors for the sample estimates using a

well-known formula for the standard error of a proportion estimated from a simple random sample

drawn without replacement. This formula is displayed in Appendix A.

11



2. Step 3b: Select the Best-Fitting Regression Model

As described in Chapter I, our regression model regresses the 51 sample estimates of state

poverty rates on symptomatic indicators. The symptomatic indicators measure state characteristics

that are likely to be associated with interstate differences in poverty rates. Although we do not need

to calculate regression estimates prior to calculating shrinkage estimates, we do need to specify the

symptomatic indicators that are included in the 'best-fitting" regression model in a particular iteration.

From a set of potential symptomatic indicators, we will include those for which the model obtained

is parsimonious and provides a good fit. Thus, we will not include symptomatic indicators that

improve the fit only marginally. We seek a model that accounts for much of the interstate variation

in poverty rates with a small number of symptomatic indicators.

We allow for up to five symptomatic indicators: (1) the proportion of the state population

receiving SSI, (2) state per capita total personal income, (3) the state crime rate, (4) a dummy

variable equal to one for the New England states, and (5) a dummy variable equal to one d at least

1 percent of the state's total personal income is derived from the oil and gas extraction industry. Our

model-fitting procedure selects the model that maximizes:

[ 51 - 1 ] (1 -R2),(2) k 2 = 1 - 51 -k - 1

where k is the number of symptomatic indicators in the regression model (ranging from one to five),

and R2 is the usual coefficient of multiple determination. Whereas the addition of a symptomatic

indicator always increases R2, _2 will decrease if the improvement in fit, as measured by R2, is small.

We repeat our model-fitting procedure for each iteration.

3. Step 3c: Calculate the Shrinkage Estimates

We use an Empirical Bayes shrinkage estimator. This estimator was used by Ericksen and

Kadaee (1985, 1987) to estimate population undercounts in the 1980 census for 66 areas covering

the entire U.S. and by Schirm, Swearingen, and Hendricks (1992) to estimate state poverty rates, FSP
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eligibility counts, and FSP participation rates. It was originally developed by DuMouchel and Harris

(1983) based on the pioneering work of I.indley and Smith (1972). The expressions for deriving the

shrinkage estimates and their standard errors are given in Appendix A.

D. STEP 4: COMPARE THE RELATIVE ACCURACY OF SAMPLE AND SHRINKAGE
ESTIMATES

We compare the relative accuracy of the sample and shrinkage estimates according to a wide

variety of accuracy criteria, including root mean squared errors and mean absolute errors. A root

mean squared error is the square root of the average squared deviation between the estimates and

the true values. A mean absolute error is the average absolute deviation between the estimates and

the true values. These and our other measures of accuracy are described in greater detail in

Appendix A and in Chapter HI. For all assessments of accuracy, the true poverty rates are the

poverty rates in the population specified in Step 1.

E. POOLED SAMPLE ESTIMATION

To obtain pooled sample estimates, we must add to the fa-st three steps of our simulation

procedure. In Step 1, we must define _populations" from which to draw samples. To simulate the

most often used procedure of pooling three consecutive annual samples, we use the nonoverlapping

observations from the March 1989 and March 1991 CPS samples, ignoring the weights on

observations and excluding unrelated individuals under age 15. From these nonoverlapping

observations, we draw stratified simple random samples for each iteration. In Step 2, we draw a

sample of nil2 individuals from the March 1989 CPS observations and a sample of nj/2 individuals

from the March 1991 CPS observations for state i. These ni additional individuals are pooled with

the n i individuals selected from the March 1990 CPS. Thus, the pooled sample estimate is based on

twice as many observations as the single sample estimate. In Step 3, the pooled sample estimate of

the proportion poor is the number of individuals in the pooled sample who are poor divided by the

13



sample size, 2ni. As explained in Appendix A, we estimate the standard error for the pooled sample

estimate from the standard error for the single sample estimate.
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IH. SIMULATION RESULTS: THE RELATIVE ACCURACY OF
SAMPLE AND SHRINKAGE ESTIMATES

In this chapter, we discuss our simulation results, comparing the relative accuracy of sample and

shrinkage estimates of state poverty rates. Our principal finding is that shrinkage estimates are

substantially more accurate than sample estimates from either a single sample or a pooled sample.

The structure of the sample and shrinkage estimates from our simulations is displayed in Table

Ill.1. For a given state in a given iteration (represented by one cell in Table III. l), we obtain three

poverty rate estimates: (1) a single sample estimate, (2) a pooled sample estimate, and (3) a shrinkage

estimate. Altogether, from each of the three estimators (single sample, pooled sample, and

shrinkage), we obtain 51,000 estimates--51 state estimates for each of the 1,000 iterations. Each

poverty rate estimate can be compared with a true poverty rate to determine the accuracy of the

estimate. For a given state, the true poverty rate remains constant across iterations and equals the

poverty rate in the population specified in Step 1 of our simulation procedure, as described in

Chapter II.

It is not meaningful to compare the errors in the three estimates for a single state in a single

iteration. The estimates and, hence, the estimation errors may be unusual due to unusually large or

small sampling errors. To control for the influence of sampling variability and discover what errors

are typical, we need to aggregate estimation errors. We take three approaches to aggregating

estimation errors: (1) aggregating errors across iterations for each state (summing all entries in a row

in Table III. l), (2) aggregating errors across states for each iteration (summing all entries in a column

in Table HI.I), and (3) aggregating errors across all iterations and states (summing all entries in Table

re.l).

We discuss the results obtained using these three approaches to aggregating estimation errors

in Sections A, B, and C, respectively. We compare the accuracy of the single sample, pooled sample,

and shrinkage estimators according to several measures of accuracy based generally on sums of errors.
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TABLE 111.1

POVERTY RATE ESTIMATES FROM SIMULATIONS

State Izeration I i ltenuion 2 i · · · i Iteration 1,000
I I I

! _ Single Sample Estimate1. Maine Single Sample Estimate g S/ngle Sample Estimate t

Pooled Sample Estimate g Pooled Sample Estimate Iil * * * g Pooled Sample Estimate

I I Single Sample Estimate2. New Hampshire Single Sample Estimate _ Single Sample Estimate I

Pooled Sample Estimate I Pooled Sample Estimate ill ' '" ill Pooled Sample Estimate

Shrinkage F_.stimate _ Shrinkage Estimate il il Shrinkage Estimate 1

................ F........... -I
· · il il I

il · il il ·

I I il
· I · I il '

................ .........:-.........4 t 1I il Single Sample Estimate

S1. Hawaii Single Sample Estimate ] Single Sample Estimate il · I Pooled Sample EstimatePooled Sample Estimate ] Pooled Sample Estimate I ' '
Shrinkage Estimate _ Shrinkage Estimate ! I Shrinkage Estimate

il I il
! il il
il il I
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In Section D, we compare how well the three estimators estimate key features of the distribution of

state poverty estimates. We examine, for example, whether the dispersion in state poverty rates is

represented accurately by a set of estimates and whether states are rank ordered accurately. In

Section E, we compare how well the three estimators estimate error, that is, how well estimated

standard errors and confidence intervals reflect the uncertainty in the poverty rate estimates.

According to the several alternative measures of accuracy we consider, we find that shrinkage

estimates are substantially more accurate than single or pooled sample estimates. For example,

calculating root mean squared errors (RMSEs) and mean absolute errors (MAEs) for each iteration

of our simulation procedure, we find that there is about a 90 to 95 percent chance that shrinkage will

improve accuracy. The median reduction in the RMSE or MAE is large--about 15 to 20 percent.

Shrinkage rarely decreases accuracy, and even when it does, the loss in accuracy is usually small.

Compared with the single and pooled sample estimators, the shrinkage estimator is almost always

more accurate, and the typical gain in accuracy from shrinkage is substant/aL

In evaluating the accuracy of estimated standard errors and confidence intervals as expressions

of our uncertainty, we find that for the pooled sample estimator, the standard errors and the

confidence intervals constructed from them are misleading. The standard errors are too small, and

the confidence intervals are too narrow, underestimating our unce.rtainty and giving a false sense of

accuracy. In contrast, standard errors and confidence intervals for the single sample and shrinkage

estimators reflect accurately the uncertainty in estimated poverty rates.

A. EVALUATING ACCURACY BY AGGREGATING ERRORS ACROSS ITERATIONS FOR
EACH STATE

One approach to measuring relative accuracy that accounts for the influence of sampling

variability involves aggregating errors across iterations for each state. In other words, we can sum

across the 1,000 columns for each row in Table HI.1.
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If we adopt this basic approach to measuring accuracy, the simplest question is: For a given state,

does shrinkage improve accuracy more often than not, that is, for at least a majority of iterations?

With this question in mind, our simplest measure of relative accuracy is obtained by counting the

number of iterations for which the shrinkage estimate is more accurate than the sample estimate. ]

In Table 111.2, we use this measure to compare the accuracy of the shrinkage and single sample

estimators. Does shrinkage improve accuracy more often than not? According to Table III.2, the

answer is "yes."

In Table III.2,statesforwhich shrinkage estimates are more accurate than sample estimates for

a majority of iterationsare counted in the top panel, while statesfor which shrinkage estimates are

lessaccurate than sample estimates for a majority of iterationsare counted in the bottom panel.

Thus,aslabeledinTableII1.2,"shrinkageincreasesaccuracy"forthc statesinthe top panel,and

"shrinkage decreases accuracy" for the statesin the bottom panel. In both panels,we displaythc

distributionof states according to the percentage of iterationsfor which the shrinkage estimate is

more accurate. Ail percentages in the top panel are above 50, while allpercentages in thc bottom

panel are below 50.

According to Table III.2,shrinkage increases accuracy for 31 states(61 percent) and decreases

accuracy for20 states(39 percent). In the median state,the shrinkage estimate ismore accurate than

the sample estimate for 57 percent of the iterations. 2

In Table III.3, we use this same measure of accuracy to compare the shrinkage and pooled

sample estimators. We find that shrinkage increases accuracy for 34 states (two-thirds) and decreases

]The shrinkage estimate is more accurate if it is closer to the true poverty rate in absolute value.

2This result cannot be obtained directly from Table III.2. In Table B.1 in Appendix B, we display
for each state the percentage of iterations for which the shrinkage estimate is more accurate.
According to Table B.1, the maximum percentage is 96, and the minimum is 29. As we caution the
reader in Appendix B, state-specific estimates are reported to show how the effects of shrinkage

might vary from state to state, not to forecast the effect of shrinkage for any particular state.
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TABLE III.2

NUMBER OF STATES FOR WHICH SHRINKAGE
ESTIMATOR IS MORE ACCURATE THAN SINGLE

SAMPLE ESTIMATOR FOR A MAJORITY OF ITERATIONS

Effect of Shrinkage Number of States

Percentage of Iterations for which Shrinkage Estimate
Is More Accurate than Sample Estimate: _

>90 3
85 - 90 7
80-85 3
75-80 2
70 - 75 1
65-70 2
60-65 3
55-60 7
50 - 55 3

i: !:i!:i:i:!::i:_::_:!_i::_::::::::::::::::::::::::::'ii :::_:i':ii::::: .:::::; : :: i::i: i:: i: : :

:ii: ...........

Percentage of Iterations for which Shrinkage Estimate
Is More Accurate than Sample Estimate:

45-50 7
40-45 3
35-40 4
30-35 4
< 30 2

aThe shrinkage estimate is more accurate than the sample estimate if the shrinkage estimate is closer
to the true poverty rate in absolute value.

bWhe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the _10 - 20" interval.
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TABLE III.3

NUMBER OF STATES FOR WHICH SHRINKAGE
ESTIMATOR IS MORE ACCURATE THAN POOLED

SAMPLE ESTIMATOR FOR A MAJORITY OF ITERATIONS

Effect of Shrinkage Number of States

Percentage of Iterations for which Shrinkage Estimate
Is More Accurate than Sample Estimate: a$

>80 5
75 - 80 4
70 - 75 2
65 - 70 5
60-65 5
55-60 7
50 - 55 6

:_:i:: :.':.i'rli::ii'i:' :::i z

Percentage of Iterations for which Shrinkage Estimate
Is More Accurate than Sample Estimate:

45 - 50 1
40-45 4
35-40 6
30-35 0
<30 6

aWhe shrinkage estimate is more accurate than the sample estimate if the shrinkage estimate is closer
to the true poverty rate in absolute value.

bWhe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.
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accuracy for 17 states (one-third). In the median state, the shrinkage estimate is more accurate than

the pooled sample estimate for 57 percent of the iterations?

A limitation to this measure of accuracy is that it ignores the relative sizes of errors except to

note which is bigger. If the sample estimate is off by 2.1 percentage points, it does not matter (to

this measure of accuracy) whether the shrinkage estimate is off by 0.2 or 2.0 percentage points. In

both instances, the shrinkage estimate is more accurate. Such a perspective potentially understates

the gains from shrinkage.

The purpose of shrinkage is to smooth out the large sampling errors. We do not expect the

shrinkage estimate to be more accurate all the time and maybe not even half the time. Instead, we

expect to improve accuracy by reducing substantially the occurrence of large errors while increasing

the frequency of moderate errors. Moderating the largest errors, a shrinkage estimator might be

preferred even if it did not increase accuracy half the time. There is no need to wrestle with this

issue because our shrinkage estimator increases accuracy more often than not compared with either

sample estimator. 4 Nevertheless, we will examine alternative measures of accuracy that are more

informative.

We consider two measures of accuracy that fully account for the relative sizes of errors: (1) the

RMSE and (2) the MAE. These measures are defined in Chapter II and Appendix A. Examining

RMSEs and MAEs, we find not only improvements in accuracy for most states, but also large

reductions in errors.

The RMSE, which is the square root of the mean squared error, has considerable appeal. The

most widely used measures of accuracy in statistics are based on squared errors. For example, the

most common method used to estimate a regression model--in any application, not just small area

estimation--is least squares, which minimizes the sum of squared errors. Squaring errors penalizes

3According to Table B. 1, the maximum percentage is 86, while the minimum is 22.

4We will see more explicitly in Section C that shrinkage reduces the frequency of large errors
while leaving unchanged the frequency of moderate errors.
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large errors heavily. If the ratio of two errors is two to one, the ratio of the squared errors is four

to one.

In Table III.4, we compare the accuracy of the shrinkage and single sample estimators on the

basis of RMSEs for states. States for which the shrinkage estimator has a lower RMSE are counted

in the top panel of the table, while states for which the shrinkage estimator has a higher RMSE are

counted in the bottom panel. Thus, as in the previous tables, shrinkage increases accuracy for the

states in the top panel and decreases accuracy for the states in the bottom panel. In both panels, we

display the distribution of states according to the percent change in the RMSE due to shrinkage. Ali

the percentages in the top panel represent decreases in the RMSE, while all the percentages in the

bottom panel represent increases in the RMSE. The relative accuracy of the shrinkage estimator falls

as we move down in each panel.

According to Table III.4, shrinkage increases accuracy for 43 states (84 percent) and decreases

accuracy for just 8 states (16 percent). In the median state, shrinkage produces a 20 percent

improvement (reduction) in the RMSE? For 11 states, the reduction in the RMSE exceeds 40

percent. For only 3 states does shrinkage increase the RMSE by more than 10 percent. Thus,

relative to the single sample estimator, the shrinkage estimator typically increases accuracy

substantially. It rarely decreases accuracy and, even then, usually only slightly. 6

In Table III.5, we compare state RMSEs for the shrinkage and pooled sample estimators. We

find that shrinkage increases accuracy for 33 states (nearly two-thirds) and decreases accuracy for 18

states (about one-third). In the median state, shrinkage produces a 14 percent improvement

5This result cannot be obtained directly from Table 111.4. In Table B.2 in Appendix B, we display
RMSEs for each estimator, by state. In Table B.3 in Appendix B, we display the ratio of the
shrinkage estimator RMSE to the sample estimator RMSE for each state. The percentage changes
in RMSEs due to shrinkage can be calculated directly from these ratios. A ratio of 0.80 indicates a
20 percent reduction in the RMSE. Although an estimator's bias is of limited relevance to an
evaluation of accuracy, we display state-specific biases in Table B.4 and frequency distributions of
absolute biases in Table B.5.

6The largest increase in the RMSE is 23 percent. The largest decrease in the RMSE is 46
percent.
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TABLE 1]].4

NUMBER OF STATES FOR WHICH SHRINKAGE ESTIMATOR HAS
LOWER RMSE THAN SINGLE SAMPLE ESTIMATOR

EffectofShrinkage NumberofStates

iiiiii'_i_',_,ii?iiiiiii'd!ii_,iiiiiiiiiiii_/_',_,?,?,',ii',ii;ili_i??iiii'_iii_iiiiiiiiii',iii!i',iis,,/,i__-'__'_:i,i'/.?_--_:_._?:':__-'_ _,_,,,,w,r,:_i_, i?!i!:_:_:.__,:/_ :::,__
Percent Decrease in RMSE: a

>40 11
30 - 40 7
20-30 8
10 - 20 8
0-10 9

Percent Increase in RMSE:

0-5 2
5- 10 3
10-15 1
15-20 1
>20 1

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

RMSE = Root Mean Squared Error
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- TABLE III.5

NUMBER OF STATES FOR WHICH SHRINKAGE ESTIMATOR HAS
LOWER RMSE THAN POOLED SAMPLE ESTIMATOR

Effect of Shrinkage Number of States

Percent Decrease in RMSE:'

>50 5
40 - 50 4
30 - 40 6
20-30 7
10 - 20 5
0- 10 6

i?ii?iii??i?iiili_?;iiiiiii',ili?:iiiili',i?!'_iili!i_',?_!i?_i_i_.?_'_!iiii'iiii_?,!!iiii!',ii!ii!i::!:ii_?_._c_..._.:_:_?_?.._.......:_.:.._...._:_È_.:_`..._....:.._?::_:_!_::_-?_':_:i:'.;';;:_"-_:_:_'_:'_'_;_::'?,'_',?:ii_:i',_:i!:.?__,_.'?,'_i',',_741_?,iii_i',!i_i',',i_ii!',!_?,i_i_,:,',_,_?,:,_i:_ii_'i!:''.::::::'
Percent Increase in RMSE:

0-10 3
10-20 4
20-30 4
30-40 2
40-50 3
>50 2

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

RMSE = Root Mean Squared Error

24



(reduction) in the RMSE. This average improvement over the pooled sample estimator is not as

large as the average improvement over the single sample estimator. Comparing Tables III.4 and III.5

reveals that the effect of shrinkage relative to the pooled sample estimator is more variable than the

effect of shrinkage relative to the single sample estimator. For many states, the shrinkage estimator

is much more accurate than the pooled sample estimator, whereas for several states, the shrinkage

estimator is much less accurate. 7

An alternative to the RMSE is the MAE. In Tables III.6 and 1II.7, we compare the accuracy

of the shrinkage estimator to the single sample and pooled sample estimators on the basis of MAEs

for states. Because MAEs penalize large errors less heavily than RMSEs, the improvements in

accuracy from shrinkage are generally slightly smaller when measured using MAEs instead of RMSEs.

Nevertheless, shrinkage increases accuracy for well over a majority of states, and reductions in MAEs

are often substantial. We find that shrinkage increases accuracy for 41 states (about 80 percent)

relative to the single sample estimator and for 33 states (nearly two-thirds) relative to the pooled

sample estimator. 8 In the median state, shrinkage produces a 16 percent improvement (reduction)

in the MAE compared with either sample estimator?

7Although the purpose of this study is to assess the relative accuracy of the sample and shrinkage
estimators, we present selected results pertaining to the relative accuracy of the regression estimator.
The regression estimator is described in Chapters I and II and in Appendix ,4,. Based on state
RMSEs, the regression estimator decreases accuracy for 27, 28, and 33 states compared with the
single sample, pooled sample, and shrinkage estimators, respectively. In the median state, the
regression estimator decreases accuracy (raises the RMSE) by 14, 10, and 27 percent relative to the
single sample, pooled sample, and shrinkage estimators. There is tremendous variation about these
medians, with the most extreme effects of regression reflecting large decreases in accuracy.
Compared with the single sample estimator, for example, the regression estimator increases the
RMSE for one state by 150 percent and decreases the RMSE for another state by over 80 percent.

8Although the shrinkage estimator is not much more likely to reduce accuracy when accuracy is
measured by MAEs instead of RMSEs, the shrinkage estimator is more likely to reduce accuracy
substantially according to MAEs.

9Based on state MAEs, the regression estimator decreases accuracy for 32, 29, and 33 states
compared to the single sample, pooled sample, and shrinkage estimators, respectively. In the median

state, the regression estimator decreases accuracy (raises the MAE) by 28, 24, and 38 percent relative
to the single sample, pooled sample, and shrinkage estimators.
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TABLE 1II.6

NUMBER OF STATES FoR WHICH SHRINKAGE ESTIMATOR HAS
LOWER MAE THAN SINGLE SAMPLE ESTIMATOR

Effect of Shrinkage Number of States

Percent Decrease in MAE: a

> 40 12
30-40 6
20-30 5
10-20 9
0- 10 9

i_ii_ijii_i;i_i_i_i_?;_i_;_i_i_i_;_;_;_i_:_i_;_?i_!_?;!_i_;_;;_;i_i_;;_i;_i;_;_;_i_i_;_;_i_;_i:._.:._._i:_n:.._g_;_l__'''''''_'''__:;?.__-u :r_i i_:.i:_._::._
Percent Increase in MAE:

0-5 2
5-10 1

10-15 3
15-20 0
>20 4

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

MAE = Mean Absolute Error
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TABLE III.7

NUMBER OF STATES FOR WHICH SHRINKAGE ESTIMATOR HAS
LOWER MAE THAN POOLED SAMPLE ESTIMATOR

EffectofShrinkage NumberofStates
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::'::::::_::i;:': :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ::'C: : :: i_:':i::: : i :: i : : :: : :::

Percent Decrease in MAE: a

>50 7
40 - 50 5
30 - 40 4
20 - 30 6
10 - 20 6
0-10 5

'iili!iii?iii!!iiiiillilj!iiliiliiiiiiiiiiiiiiiiiii!iiiii!i':'iii'ii:?'i??!i?i?i!i"?ili?!il?iili::!ii!!i??_:.ii!i?.i!.!_iiiiii_ii?iiiiii!i!ii!ii_illi_i_i!i!i_i!!!ii_i!iiii?ii!iii!!ii?ili!'_'i?i!i'iii_iiiii?i?i'iiiii!!iiil?iii_:_?i:i_'!:._;_'_zi_ii'iiilili?i_i_i:.:-_i__:::.::.:_ij?:j ii, ,:: :_$.h:nljj_gei;i'""'_i,s.:....._i;:_.Aceuraey:.{R.tse.s_. :_;_i_;::

Percent Increase in MAE:

O- 10 1
10-20 6
20-30 3
30-40 2
40-50 1

>50 5

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

MAE = Mean Absolute Error
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According to all three measures of accuracy that aggregate errors across iterations, the shrinkage

estimator is more accurate than either sample estimator for well over a majority--anywhere from 60

to 85 percent--of the states. When we take full account of the magnitudes of errors, we find that

shrinkage substantially increases accuracy. On average, state RMSEs and MAEs are reduced by

about 15 to 20 percent.

B. EVALUATING ACCURACY BY AGGREGATING ERRORS ACROSS STATES FOR EACH
ITERATION

In Section Pi, we measured accuracy by aggregating errors across iterations for each state. In

this section, we measure accuracy by aggregating errors across states for each iteration. That is, we

sum down the 51 rows for each column in Table III. 1. We can think of different iterations as

different points in time. At each point in time, we derive state estimates under conditions that have

not changed except that we have drawn a different sample.

How often are shrinkage estimates more accurate? As in Section A, we consider different ways

of measuring accuracy. And, as in Section A, the simplest is obtained by counting, although we now

count states rather than iterations. Specifically, to determine whether the shrinkage estimator is more

accurate for a particular iteration, we count the number of states for which the shrinkage estimate

is more accurate than the sample estimate, l°

With this measure of accuracy, we can answer a very simple question: For a given iteration, does

shrinkage improve accuracy more often than not, that is, for at least a majority of states? In Table

III.8, we use our measure that counts states to compare the accuracy of the shrinkage and single

sample estimators. Does shrinkage improve accuracy more often than not? According to Table III.8,

the answer is "yes."

In Table III.8, iterations for which shrinkage estimates are more accurate than sample estimates

for a majority of states are counted in the top panel, while iterations for which shrinkage estimates

_°As before, the shrinkage estimate is more accurate if it is closer to the true poverty rate in
absolute value.
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TABLE 111.8

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE
ESTIMATOR IS MORE ACCURATE THAN SINGLE

SAMPI_ ESTIMATOR FOR A MAJORITY OF STATES

Effect of Shrinkage Percentage of Iterations

i?:::?.:i_i:?:i!:??:;iiiiii::iii?:!i_i:._:ii:._iii::i?/?_:._??_?:ii_i??:i!_?::i_ii__:_::::!:.!:?i_?:_::!::_i::_i???..::::ii?i??:i!ii!!i::!::!ii_!::?:?:i::ii::::!!_i!_!!.iii?:_!!::_??:::!?:!i:;.?:_i.?:::_i:.::i:;.?:..! :: ::_:ii__:_::i _:: _:' ::: ::,ilil:,i::ii::,ilil;iiiiiiiiiiiiiiiiiiiiii:i:.i::;?,iiiiiiiil;ii._.:..J_bgO;i !;[nc._q:q.:..q:'A'"'""_'"--_'_:'_;?.._:qi._;A...cCU_e.fo:ra ....._Jori_. ?fSta .:s): i :

Number of Statesfor which Shrinkage :Estimate
Is More Accurate than Sample Estimate: a

>35 8
31-35 44
26 - 30 40

ii::?:ii!ii?:i:.:ii::_iiii:-iii??:i!?/:!ii?_I:'_:!!!Ii_:_::i?:::!i?.:?:i?:::!!__:._!?.::!ii!!?::_i?ii!?:iiii::ii::_::i:.i_?:i?:iiii!_i_?:!_ii_::i_iii_ii_!i_i_iiiii.ii!ii;:_i_i!i_ii!ii::ii_i!i!ii?:?:i_?_iiiii!:.:i: : iili_i?::.;i:i_ii_+!iilz::.i?.i? i_!:i:.:i::__i!?': :/:iiii i?:iii_:ii!i!ii!i?iiiiiiiiiiiiiiiiii:.ii;i,iiiiiiiiii!S!in 'k_ei!.._.._i?iAei...i....m',._!i:'/._i.sii'A_i'i'.'._'_.fora iMajOfity '_'fStates)i

Number of Statesfor which ShrinkageEstimate
Is More Accurate than Sample Estimate:

21 -25 7
<21 1

aWhe shrinkage estimate is more accurate than the sample estimate if the shrinlrage estimate is closer
to the true poverty rate in absolute value.
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are less accurate than sample estimates for a majority of states are counted in the bottom panel.

Thus, as labeled in Table HI.8, "shrinkage increases accuracy" for the iterations in the top panel, and

"shrinkage decreases accuracy" for the iterations in the bottom panel. In both panels, we display the

distribution of iterations according to the number of states for which the shrinkage estimate is more

accurate. The number of states is 26 or higher in the top panel and 25 or lower in the bottom panel.

According to Table III.8, shrinkage increases accuracy 92 percent of the time and decreases

accuracy only 8 percent of the time. In the median iteration, the shrinkage estimate is more accurate

than the sample estimate for 31 states. The most states for which shrinkage increases accuracy in any

iteration is 42, and the fewest is 18.

In Table III.9, we use the same measure of accuracy to compare the shrinkage and pooled

sample estimators. We find that shrinkage increases accuracy 79 percent of the time and decreases

accuracy just 21 percent of the time. The median number of states with more accurate estimates

from shrinkage is 28. The most states with more accurate estimates from shrinkage in any iteration

is 39, and the fewest is 18.

This measure of accuracy based on counting has the same limitation when we count states as

when we count iterations: it takes no account of the magnitudes of errors except to recognize that

one error is bigger than another. For each iteration, we count how many states have more accurate

estimates from shrinkage and how many have less accurate estimates, but we ignore how big the gains

and losses in accuracy are. We would probably be willing to accept several small losses in accuracy

for one or two big gains. For example, increasing the estimation error by one-tenth of a percentage

point for three or four states is a good tradeoff for knocking a percentage point off a two percentage

point error. We are not forced to evaluate such a tradeoff here because most of the time, shrinkage

increases accuracy for more than half the states. Nevertheless, as in Section A, we will examine two

alternative measures of accuracy--the RMSE and the MAE--that take into account how big the

increase or decrease in accuracy is for a state.
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TABLE II1.9

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE
ESTIMATOR IS MORE ACCURATE THAN POOLED

SAMPLE ESTIMATOR FOR A MAJORITY OF STATES

EffectofShrinkage PercentageofIterations

Number of States for which Shrinkage Estimate
Is More Accurate than Sample Estimate: a

>35 1
31-35 25
26-30 52

..
Number of States for which Shrinkage Estimate
Is More Accurate than Sample Estimate:

21-25 20
<21 1

aThe shrinkage estimate is more accurate than the sample estimate if the shrinkage estimate is closer
to the true poverty rate in absolute value.
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In Table III.10, we compare the accuracy of the shrinkage and single sample estimators on the

basis of RMSEs calculated for each iteration. According to Table III. 10, shrinkage increases accuracy

(reduces the RMSE) 97 percent of the time and decreases accuracy only 3 percent of the time. The

median reduction in the RMSE is a very substantial 21 percent. For only 1 percent of iterations does

shrinkage increase the RMSE by more than 10 percent. Thus, relative to the single sample estimator,

the shrinkage estimator almost always increases accuracy substantially. It rarely decreases accuracy

and almost never decreases accuracy by much?

In Table III. Il, we compare RMSEs for the shrinkage and pooled sample estimators. Relative

to the shrinkage estimator, the pooled sample estimator performs only slightly better than the single

sample estimator. According to Table 111.11,shrinkage increases accuracy 90 percent of the time and

decreases accuracy just 10 percent of the time. The median reduction in the RMSE is 17 percent.

In Tables III. 12 and III. 13, we compare the accuracy of the shrinkage estimator with the single

sample and pooled sample estimators on the basis of MAEs. Although MAEs penalize large errors

less heavily than RMSEs, and, thus, we might expect smaller gains in accuracy using MAEs instead

of RMSEs, we find little difference from our results for RMSEs. Shrinkage almost always increases

accuracy, and the gains in accuracy are typically very large?

In this section, RMSEs and MAEs are calculated by adding state squared and absolute errors,

respectively. This raises the issue of whether state errors should be differentially weighted. In

Section A, where we calculated a RMSE for a given state by aggregating errors across iterations, the

iterations were equal except for differences due entirely to sampling variability. In this section, where

we calculate a RMSE for a given iteration by aggregating errors across states, states are not equal.

nThe largest increase in the RMSE for any iteration is 19 percent. The largest decrease in the
RMSE is 47 percent.

12Compared with the single sample estimator, shrinkage increases accuracy 97 percent of the time,
and the median reduction in the MAE is 20 percent. Compared with the pooled sample estimator,
shrinkage increases accuracy 90 percent of the time, and the median reduction in the MAE is 17
percent.
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TABLE III.10

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE ESTIMATOR
HAS LOWER RMSE THAN SINGLE SAMPI_F. ESTIMATOR

Effect of Shrinkage Percentage of Iterations

Percent Decrease in RMSE: a

> 30 10
20-30 43
10 - 20 35
0- 10 10

j!!!i!i!iiiiiiiiii!ili_iiii!?ii!ilil_!i!i_ii?iliiiiiiii!i_?i_:!!i?:i!!i!!i_iii!iii!ii!i!i?ili!i_i!i!iiiii_ii!ii?s'_'?_':_:_"_?_!!?_::'-'""'"'"_'_.._:,"'_'_:__:!!::(_:_:;:7:_:""_'_i_!!i:ii!il i_!! _ :!!ii
Percent Increase in RMSE:

0- 10 2
> 10 1

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

RMSE = Root Mean Squared Error
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TABLE III.11

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE ESTIMATOR
HAS LOWER RMSE THAN POOLED SAMPLE ESTIMATOR

Effect of Shrinkage Percentage of Iterations

Percent Decrease in RMSE: a

> 30 8
20 - 30 28
10-20 36
0-10 18

Percent Increase in RMSE:

0- 10 8
>10 2

aThe common boundary of two intervals falls in the lower interval. Thus, '10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

RMSE = Root Mean Squared Error
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TABLE III.12

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE ESTIMATOR
HAS LOWER MAE THAN SINGLE SAMPLE ESTIMATOR

Effect of Shrinkage Percentage of Iterations

Percent Decrease in MAE: a

>30 7
20 - 30 43
10-20 36
0-10 11

Percent Increase in MAE:

0-10 2
>10 1

aThe common boundary of two intervals falls in the lower interval. Thus, _10"falls in the "0 - 10"
interval, not the "10 - 20" interval.

MAE = Mean Absolute Error
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. TABLE III.13

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE ESTIMATOR
HAS LOWER MAE THAN POOLED SAMPLE ESTIMATOR

EffectofShrinkage PercentageofIterations
: : ::: :

ii iiiii i:i iiiii ii?:!!?j i ii i ii! i iii  i! iiiiiii!ii iii !!i?ii i??i  iii ii  iiiiiii iii i:iii?ii:i i ii?i?i?i :i  : j  `/  `.` :.  !?i!
Percent Decrease in MAE: a

>30 8
20-30 30
10 - 20 34
0- 10 19

iiiiiiiiiii:i?i?ii!iiiiiiiiiii??iii_i:iii_i_iiiii?iiii!iii_i?_!?i?i:iiiiiiiiiii?iii!iiiiiiiiii!ii!iiiiii!!i?_!iii!Jiili:!!i?'iliiii!iiii?iiiii:ii?i?i_':_:'_J_in:_!?i_'_"_"_'_'_:--'__!!'" :':'"':_:::_':_:_;J!._._:_:,'i:_'_'::_?_is?i"'"'_'_:':'_::_!i:ii_i.!i:i:i:i_?ii!ii!:! _;::iii iiiii:i?:ii!iiiJlii!i:i!!i!!i!iii!iiiiiiii!'iiiliii_ii!::

Percent Increase in MAE:

0-10 8
> 10 2

aThe common boundary of two intervals falls in the lower interval. Thus, '10' falls in the '0 - 10"
interval, not the '10 - 20" interval.

MAE = Mean Absolute Error
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Some states are larger than others, and some have more poor people than others. Is a one

percentage point error for a large state as important, more important, or less important than a one

percentage point error for a small state?

We explore three weighting schemes: (1) weighting states equally, (2) weighting states by

population shares, and (3) weighting states by poverty shares. A state's population share weight is

the share (proportion) of all individuals in the population living in the state. A state's poverty share

weight is the share (proportion) of ali poor individuals in the population living in the state. The

second and third weighting schemes, which are closely related, give the greatest weight to errors for

states with the most people and the most poor people, respectively. These weighting schemes are

described in greater detail in Appendix A.

We displayed the results obtained using the first weighting scheme, which weights states equally,

in Tables III. 10-III.13. In Tables III. 14-III. 17, we repeat those results and present the results

obtained using the two differential weighting schemes. We find that the incidence of very large gains

in accuracy falls wehen the errors for the large states are weighted more heavily than the errors for

the small states? This suggests, as expected, that the largest gains in accuracy from shrinkage are

for the smallest states, where sample sizes are small and sample estimates are relatively imprecise.

The principal finding from this sensitivity analysis is that our results are not terribly sensitive to

the weighting scheme used. Changing the weighting scheme barely changes either the frequency or

13We also find effects of weighting at the other end of the distribution. When we weighted state
errors equally, we concluded that shrinkage almost never decreases accuracy by much. We draw this
same conclusion from our findings pertaining to differential weighting. Moreover, although increases
in RMSEs and MAEs exceeding 10 percent occur as frequently or slightly more frequently with
differential weighting as with equal weighting, some of the largest decreases in accuracy are mitigated
when we calculate differentially weighted RMSEs and MAEs.
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TABLE III.14

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE
ESTIMATOR HAS LOWER RMSE THAN SINGLE SAMPI.E ESTIMATOR,

BY WEIGHTING SCHEME USED TO CALCULATE RMSE

Percentage of Iterations

Equal Population Poverty
Effectof Shrinkage Weights Weights Weights

Percent Decrease in RMSE: a

>30 9 3 3
20-30 43 42 42
10 - 20 35 40 41
0- 10 10 11 12

iZiii:_!iiii?i!?i'?::'??:.'???i'i!':;ii'!'i'i'?ii'i'i'ii':_'ii:;iiiii'iiiiiiiiiii'iiiiiiiiii!ii'iiiiii?i'i'?!':.?:_::_i::!ii'i'?.:::_?i'::?:!!!ii!i!!.!.i!?!.i.i_::_:::::::.!!i_i.!.iii.i!i?_ii?i:_.i.?_.i._.i._.i.?:?i.?i.i.i.i._!.?ii: i' : _:_:::i_:::iii':::::_i?:iii_i::__i__:i:?' iiii:.i!::iiii!::i:iii :::iii?iii:_ ?::i

Percent Increase in RMSE:

0-10 2 2 2
>10 1 1 1

NOTE: A state's population weight is obtained by dividing the true state population by the true
U.S. population. A state's poverty weight is obtained by dividing the true state poverty
count by the true U.S. poverty count.

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the '0 - 10'
interval, not the '10 - 20' interval.

RMSE = Root Mean Squared Error
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TABLE III.15

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE

ESTIMATOR HAS LOWER RMSE THAN POOLED SAMPI_E ESTIMATOR,
BY WEIGHTING SCHEME USED TO CALCULATE RMSE

Percentage of Iterations

Equal Population Poverty
Effectof Shrinkage Weights Weights Weights

Percent Decrease in RMSE: a

>30 8 6 6
20-30 28 28 27
10-20 36 37 38
0- 10 18 20 20

::ii!:. i iiiiiiiiii:_iiii!i!:.?:iiii::iiiiiii?.?.iii::iliii?:iiiiii:.:_iiii:-i::iiiiliiilliii($h.:rm..kag_i'""_:._.N,a.::!:_:'-/_ie.uraey0_a!s s.._ .._ _;? !i:.!;i:.i??i :.::7.i_:::: ::_i::i:

Percent Increase in RMSE:

0-10 8 7 7
>10 2 1 2

NOTE: A state's population weight is obtained by dividing the true state population by the true
U.S. population. A state's poverty weight is obtained by dividing the true state poverty
count by the true U.S. poverty count.

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

RMSE = Root Mean Squared Error
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TABI__ III.16

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE

ESTIMATOR HAS LOWER MAE THAN SINGLE SAMPLE ESTIMATOR,
BY WEIGHTING SCHEME USED TO CALCULATE MAE

Percentage of Iterations

Equal Population Poverty
Effect of Shrinkage Weights Weights Weights

............i...ii.::i..i..?...i....?_.........C_'"/i:/_'_..ii.':'=_'_'_:_:-_:_.":_x_:'.__.i..:i?, .. :_::_::.::..i.
Percent Decrease in MAE:"

>30 7 1 1
20-30 43 31 31
10 - 20 36 47 48
0- 10 11 16 16

Percent Increase in MAE:

0-10 2 3 3
>10 1 1 1

NOTE: A state's population weight is obtained by dividing the true state population by the true
U.S. population. A state's poverty weight is obtained by dividing the true state poverty
count by the true U.S. poverty count.

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

MAE = Mean Absolute Error

40



TABLE 111.17

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE
ESTIMATOR HAS LOWER MAE THAN POOLED SAMPLE ESTIMATOR,

BY WEIGHTING SCHEME USED TO CALCULATE MAE

Percentage of Iterations

Equal Population Poverty
Effectof Shrinkage Weights Weights Weights

Percent Decrease in MAE: a

>30 8 6 6
20-30 30 26 26
10-20 34 33 34
0-10 19 22 22

=============================================================:.:.:.:.:.:.:.:.:-:.:-:-:.:.:.:.:.:.:.:.:.:.:.:.::.:.:`:.:.:.:.:.:.:.:.:.:.:.:.:_:.:.:.:.:.:.:.:._.:.:.:.:.:.:_.._.:_:.:.:.:.:.:.:.:_:_:.:_:.:_:.:.:.:.:.:*:.:.:.:.:.:.:`:._.:.:.:_:.:.:.:.:.:.:.:_:.:.:_:.:.:.:.:_:.:_:_:.:.:_::..: :::::::::::::::::::::::::::.:.::;-:.:.:.:.:.:.:.:.:4.:,:.:.:.:.:,:.:-:-:-:.:.:.:-:-:.:.:-:,:.:4-:-:.;:.:-;:4.:.:.:.:.:,:.:.:.:.:.:.:,:.:.:.:.:.:.:4.:.:.:.:.:.:.:.:.:.:.:.:.:.::::

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

Percent Increase in MAE:

0-10 8 9 9
>10 2 4 4

NOTE: A state's population weight is obtained by dividing the true state population by the true
U.S. population. A state's poverty weight is obtained by dividing the true state poverty
count by the true U.S. poverty count.

aThe common boundary of two intervals falls in the lower interval. Thus, "10" falls in the "0 - 10"
interval, not the "10 - 20" interval.

MAE = Mean Absolute Error
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the average magnitude of improvement .in accuracy. TM Thus, our main conclusion is unaltered.

Almost all the time, the shrinkage estimator is more accurate than the single and pooled sample

estimators, and the typical gain in accuracy is substantial?

In addition to adding estimation errors across states, we can add the estimates themselves across

states to obtain an estimated national poverty rate for each iteration. Then, we can evaluate the

accuracy of the national poverty rate estimates.

If our sole objective were to estimate the national poverty rate, we would use the single sample

estimator. However, when our objective is to estimate state poverty rates, the evidence obtained so

far suggests that the shrinkage estimator should be used. This raises the following question: Does

shrinkage introduce substantial error into the national poverty rate estimate? The answer is "no."

In Table 1II.18, we compare the single sample, pooled sample, and shrinkage estimators

according to several accuracy criteria, and in Table III. 19, we display frequency distributions of

absolute estimation errors. Although the single sample estimate is more accurate than the shrinkage

estimate 62 percent of the time according to Table HI.18, the errors associated with either estimator

tend to be small in most iterations. According to Table III.19, roughly two-thirds to three-quarters

14Compared with the single sample estimator, the median reduction in the RMSE from shrinkage
is 19 percent, and the median reduction in the MAE is 17 percent weighting by either the population
weights or the poverty weights. The median reductions were 21 percent and 20 percent when state
errors were equally weighted. Compared with the pooled sample estimator, the median reduction
in the RMSE is 16 percent, and the median reduction in the MAE is 15 percent weighting by either
the population weights or the poverty weights. The median reductions were both 17 percent when
state errors were equally weighted. Generally, the effects of weighting are larger for the MAE than

for the RMSE and for the comparison between shrinkage and single sample estimation than for the
comparison between shrinkage and pooled sample estimation.

lSWe have also calculated RMSEs and MAEs for the regression estimator. Compared with the
single sample estimator, the regression estimator reduces accuracy (increases the RMSE) about 95
percent of the time. The median increase in the RMSE is 21 percent. Compared with the pooled
sample estimator, the regression estimator reduces accuracy in all but 5 iterations, and the median
increase in the RMSE is 26 percent. Compared with the shrinkage estimator, the regression
estimator always reduces accuracy. The increase in the RMSE is less than 10 percent in only 1
iteration and between 10 and 14 percent in just 14 iterations. The median increase in the RMSE is
34 percent. The regression estimator performs even more poorly according to MAEs and when state
errors are weighted by population or poverty shares. Relative to the sample and shrinkage estimators,
the median increase in the weighted MAE is 40 to 50 percent.
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TABLE III.18

ACCURACY IN ESTIMATING THE NATIONAL POVERTY RATE

Sample

AccuracyCriterion Single Pooled Shrinkage

Percentage of Iterations for which
Shrinkage Estimate is More
Accuratethan SampleEstimatea 38 81 n.a.

RMSE 0.184 0.383 0.212

MAE 0.146 0.360 0.171

Bias 0.005 0.360 -0.106

aThe shrinkage estimate is more accurate than the sample estimate if the shrinkage estimate is closer
to the true poverty rate in absolute value.

RMSE = Root Mean Squared Error

MAE = Mean Absolute Error

n.a. = not applicable
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TABLE III.19

FREQUENCY DISTRIBUTION OF ABSOLUTE ERRORS IN ESTIMATING

THE NATIONAL POVERTY RATE, BY ESTIMATOR

Percentage of Estimates

Absolute Estimation Error Sample

(Percentage Points) a Single Pooled Shrinkage

0-0.1 42 2 34

0.1-0.2 30 9 30

0.2-0.3 17 23 19

0.3 - 0.5 10 52 15

> 0.5 1 15 2

aThe common boundary of two intervals falls in the lower interval. Thus, "0.1" falls in the m0- 0.1"
interval, not the '0.1 - 0.2" interval.
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of the estimation errors are less than two-tenths of a percentage point, and errors rarely exceed a half

percentage point. Errors for the pooled sample estimator tend to be larger; 15 percent of the time

they exceed half a percentage point. 16 The MAE is nearly four-tenths of a percentage point, more

than twice the MAEs for the shrinkage and single sample estimators. On balance, the shrinkage

estimator is nearly as accurate as the single sample estimator for estimating the national poverty rate,

and both estimators produce substantially more accurate estimates than the pooled sample estimator.

C. EVALUATING ACCURACY BY AGGREGATING ERRORS ACROSS ALL ITERATIONS
AND STATES

In Section A, we measured accuracy by aggregating errors across iterations for each state. In

Section B, we measured accuracy by aggregating errors across states for each iteration. In this

section, we measure accuracy by aggregating errors across all iterations and states. That is, we sum

across all 51,000 cells in Table IYl.1.

Comparing all 51,000 pairs of shrinkage and single sample estimates, we find in Table I11.20 that

the shrinkage estimate is more accurate 60 percent of the time. Comparing all 51,000 pairs of

shrinkage and pooled sample estimates, we find in Table III.21 that the shrinkage estimate is more

accurate 55 percent of the time. In Tables Ili.20 and III.21, we also find that shrinkage reduces

RMSEs and MAEs by 15 to 20 percent compared with the single and pooled sample

estimators. 17,1s

Table I/I.22 shows the frequency distribution of the 51,000 absolute estimation errors for each

of our three estimators and helps to illustrate the effect of shrinkage. The main limitation of the

16In the 1,000 iterations, the largest absolute estimation errors are 0.64, 0.80, and 0.73 percentage
points for the single sample, pooled sample, and shrinkage estimators. The median errors are 0.12,
0.36, and 0.15 percentage points.

17Expressions for the weighted RMSEs and MAEs are given in Appendix A.

lSCompared with the sample estimators, the regression estimator increases RMSEs by 20 to 35
percent and MAEs by 25 to 50 percent, with the larger increases occurring when state errors are
differentially weighted. Compared with the shrinkage estimator, the regression estimator increases
RMSEs and MAEs by 50 to 75 percent.
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TABLF_ III.2.0

EFFECT OF SHRINKAGE ON ACCURACY ACROSS ALL STATES AND ITERATIONS:
SHRINKAGE ESTIMATOR VERSUS SINGLE SAMPLE ESTIMATOR

Accuracy Criterion Effect of Shrinkage

Percentage of All Shrinkage Estimates that
Are More Accurate than Sample Estimates 60

Aggregate Percent Reduction in RMSE:

· RMSEWeightedEqually 20

· RMSEWeightedbyPopulationShares 18

· RMSEWeightedbyPovertyShares 18

Aggregate Percent Reduction in MAE:

· MAE Weighted Equally 19

· MAEWeightedbyPopulationShares 16

· MAEWeightedbyPovertyShares 16

NOTE: A state's population share weight is obtained by dividing the true state population by the
true U.S. population. A state's poverty share weight is obtained by dividing the true state
poverty count by the true U.S. poverty count.

RMSE = Root Mean Squared Error

MAE = Mean Absolute Error
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TABLE III21

EFFECT OF SHRINKAGE ON ACCURACY ACROSS ALL STATES AND ITERATIONS:
SHRINKAGE ESTIMATOR VERSUS POOLED SAMPLE ESTIMATOR

Accuracy Criterion Effect of Shrinkage

Percentage of All Shrinkage Estimates that 55
Are More Accurate than Sample Estimates

Aggregate Percent Reduction in RMSE:

· RMSE Weighted Equally 16

· RMSE Weighted by Population Shares 16

· RMSEWeightedby PovertyShares 16

Aggregate Percent Reduction in MAE:

· MAEWeightedEqually 16

· MAEWeightedby PopulationShares 15

· MAE Weighted by Poverty Shares 14

NOTE: A state's population share weight is obtained by dividing the true state population by the
true U.S. population. A state's poverty share weight is obtained by dividing the true state
poverty count by the true U.S. poverty count.

RMSE = Root Mean Squared Error

MAE = Mean Absolute Error
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TABLE III22

FREQUENCY DISTRIBUTION OF ABSOLUTE ESTIMATION ERRORS,
BY ESTIMATOR

Percentage of All Estimates

Absolute Estimation Error Sample

(Percentage Points) a Single Pooled Shrinkage

0.0 - 0.5 29 29 34

0.5- 1.0 23 24 26

1.0 - 2.0 29 30 29

> 2.0 19 18 11

aThe common boundary of two intervals falls in the lower interval. Thus, '1.0" falls in the "0.5 - 1.0"
interval, not the _1.0 - 2.0" interval.
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single sample estimator is high sampling variability. Even though the estimates are correct on average

(that is, unbiased), we get very large estimation errors much too often. Using a shrinkage estimator,

we are willing to accept some bias and an increase in the frequency of moderate errors to reduce the

incidence of large errors. According to Table HI.22, nearly 1 in 5 (single or pooled) sample estimates

are more than two percentage points from the true value. In contrast, just over 1 in 10 shrinkage

estimates are that far off. Such a result is not surprising. What is surprising is that while substantially

decreasing the frequency of very large estimation errors, shrinkage did not increase the frequency of

moderate errors. Instead, a higher proportion of errors are fairly small. While 29 percent of sample

estimates are within a half percentage point of the true value, 34 percent of shrinkage estimates are

that close. Furthermore, as we saw in Tables III.20 and 1II.21, the shrinkage estimate is more

accurate than either sample estimator in pairwise comparisons 55 to 60 percent of the time.

Aggregating across both iterations and states implies the same conclusion as aggregating across

either iterations or states. Shrinkage estimates are substantially more accurate than sample estimates.

D, DISTRIBUTIONAL ACCURACY

In this section, we investigate how accurately the sample and shrinkage estimates represent key

features of the distribution of state poverty rates. We consider two criteria of distributional accuracy:

(1) the variability of state poverty rates and (2) the rank ordering of state poverty rates?

A potential limitation of the single sample estimator is that it tends to overstate variability among

state poverty rates. Some states may have very iow poverty rates partly because of very large negative

sampling errors. Other states may have very high poverty rates partly because of very large positive

19For most applications,we would want to select the most accurate estimator, and our results in
Sections A, B, and C are the most important for assessing accuracy. Because our findings suggest

that the shrinkage estimator is substantially more accurate than the sample estimators, the main issue
in this section is whether the shrinkage estimator somehow distorts the distribution of state poverty
rates. That distributional accuracy is a limited standard compared with criteria such as the RMSE
and MAE can be seen in a simple example. Suppose an estimator always overestimates every state's
poverty rate by 10 percentage points. That terribly inaccurate estimator perfectly estimates the
standard deviation and rank ordering of the state poverty rates.
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sampling errors. Thus, the estimated poverty rates may be more dispersed than the true poverty

rates. In contrast, a potential limitation of the shrinkage estimator is that it may understate variability

among state poverty rates by shrinking the smallest and largest poverty rates toward the average

poverty rate.

Became shrinkage estimates seem to be much more accurate than sample estimates according

to criteria--like the RMSE and MAE--that sum state errors, we might expect that the shrinkage

estimates better represent the true distribution of state poverty rates. However, if the entire gain in

accuracy from shrinkage were attributable to more accurate estimates for states with moderate

poverty rates, the shrinkage estimates might understate variability in poverty rates.

In Table 111.23, we display results for three measures of dispersion: (1) the standard deviation,

(2) the range, and (3) the interquartile range. The range is the difference between the maximum and

minimum poverty rates. The interquartile range is the difference between the third and first quartiles

(that is, the 75th and 25th percentiles or, roughly, the 13th and 38th highest poverty rates). In

contrast to the standard deviation and, especially, the range, the interquartile range is not sensitive

to one or two extreme values among the 51 state poverty rates.

In the top panel of Table III.23, we display the results pertaining to standard deviations. For

each iteration, we calculated the standard deviation of the 51 single sample estimates, the standard

deviation of the 51 pooled sample estimates, and the standard deviation of the 51 shrinkage estimates.

Thus, we have 1,000 standard deviations of, for example, shrinkage estimates. In the last column of

Table III.23, we give selected percentiles for the distribution of those 1,000 standard deviations. The

90th percentile--the value below which are 90 percent (900) of the 1,000 standard deviations--is 4.0.

The 25th percentile--the value below which are 25 percent (250) of the 1,000 standard deviations--is

3.6. As shown, the true standard deviation is 3.9.

According to Table III.23, the sample estimators tend to overstate variability, while the shrinkage

estimator tends to understate variability. However, the shrinkage estimator seems to more accurately
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TABLE III.23

ACCURACY IN ESTIMATING THE DISPERSION OF STATE ESTIMATES

Estimated Dispersion Among State Estimates

Sample

Percentile a Single Pooled Shrinkage

90th 4.5 4.5 4.0

75th 4.4 4.4 3.9

50th(median) 4.2 4.3 3.7

25th 4.0 4.2 3.6

10th 3.9 4.0 3.4

....................................'::_/_'_:_'_?__:i_:_:_,:_' _ :-::_v_:/i_,::_,:_:__'_::_ ;_::_!':_?o.........,...................,
90th 24.1 22.4 20.7

75th 22.6 21.5 19.6

50th(median) 21.1 20.5 18.7

25th 19.7 19.5 17.7

10th 18.4 18.6 16.7

90th 6.0 6.0 5.3

75th 5.8 5.6 5.0

50th(median) 5.1 5.3 4.6

25th 4.7 4.9 4.2

loth 4.3 4.6 3.9

aFor each of the 1,000 iterations, we calculated the standard deviation of, for example, the 51 state
shrinkage estimates. The last column of the top panel gives the percentiles of the distribution of
those 1,000 standard deviations.
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reflect the dispersion in state poverty rates except when dispersion is measure by the range. We also

find that the pooled sample estimator exaggerates the standard deviation and interquartile range even

more than the single sample estimator. Considering the interquartile range, we find that the

distribution of values for the shrinkage estimator is almost centered on the true interquartile range

of 4.7. In contrast, the distributions of interquartile ranges for the single and pooled sample

estimators are centered well above 4.7, with 75 percent or more of the estimated interquartile ranges

above this true value.

We have also studied the dispersion in estimated poverty rates by counting the number of states

with estimated poverty rates above and below specified thresholds. In our simulations, 16 states

(approximately one-third) have true poverty rates below 10 percent, and 17 states (exactly one-third)

have true poverty rates above 13 percent. Thru, 10 and 13 percent thresholds divide the states into

approximate terciles.

In Table III.24, we determine how accurately the single sample, pooled sample, and shrinkage

estimators estimate the number of states with poverty rates below our bottom threshold (10 percent)

and above our top threshold (13 percent). 2° In the top panel of Table III.24, we display the

distribution of the estimated number of states with poverty rates below 10 percent. According to the

last column, which pertains to the shrinkage estimator, there were 16 states below the threshold in

15 percent of the iterations and 14 or 15 states below the threshold in 32 percent of the iterations.

Our findings in Table III.24 are generally consistent with our findings based on the three

summary measures of dispersion. The sample estimators tend to overstate variability, while the

shrinkage estimator tends to understate variability. For the sample estimators, this tendency seems

to be attributable entirely to exaggerating the number of states with high poverty rates. In fact, all

2°Like the results in Table III.23 for estimated ranges, the results in Table 131.24 should be
interpreted cautiously. The results in Table III.24 are potentially sensitive to our selection of
threshold values and the patterns of estimates for one or two states. For example, our findings may
have been different had we placed the lower threshold at 9.9 percent, rather than 10 percent. There
would still have been 16 states with true poverty rates below the 9.9 percent threshold, but 3 of those
16 would have had poverty rates within one-tenth of a percentage point of the threshold.
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TABLE 1II.24

ACCURACY IN ESTIMATING THE NUMBER OF STATES WITH POVERTY RATES
BELOW 10 PERCENT OR ABOVE 13 PERCENT

Percentage of Iterations

Sample

Numberof States Single Pooled Shrinkage

< 14 12 13 25

14- 15 30 40 32

16 20 24 15

17- 18 29 22 22

>18 9 2 6

< 15 1 0 7

15- 16 14 1 47

17 16 5 24

18- 19 39 28 19

> 19 30 66 3

NOTE: Approximately one-third (16) of the states have true poverty rates below 10 percent, and
exactly one-third (17) of the states have true poverty rates above 13 percent.
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three estimators tend to understate the number of low poverty rate states, although the shrinkage

estimator is more likely to underestimate that number by at least two states. According to Table

rII.24, there is a strong asymmetry in errors. In estimating the number of low poverty rate states, the

shrinkage estimator is off by at least two states 31 percent of the time, whereas the single and pooled

sample estimators are offby at least two states 21 and 15 percent of the time. However, in estimating

the number of high poverty rate states, the shrinkage estimator is off by at least two states just 10

percent of the time, whereas the single and pooled sample estimators are off by at least two states

31 and 66 percent of the time. The pooled sample estimator exaggerates the number of high poverty

rate states 94 percent of the time. TM

In assessing distributional accuracy, we have so far considered only whether estimated poverty

rates are spread out too much or too little. Another relevant issue is whether the estimated poverty

rates are in the right order.

For each of our three estimators, we have calculated the rank correlation between the estimated

and the true state poverty rates for every iteration. The results are displayed in Table III.25. The

rank correlation for the shrinkage estimator exceeds the rank correlation for the single sample

estimator 88 percent of the time and the rank correlation for the pooled sample estimator 57 percent

of the time. Nevertheless, all three estimators rank states fairly accurately. The minimum rank

correlations exceed 0.8, and the median rank correlations exceed 0.9.

Although ali three estimators rank states accurately when all 51 states are considered, a relevant

question is whether the estimators rank states accurately in the tails of the poverty rate distribution.

21We can also aggregate across iterations. There are 18 states with true poverty rates between
10 and 13 percent. Thus, out of 51,000 estimates from a given estimator, the expected number of
estimates between 10 and 13 percent is 18,000--18 in each of 1,000 iterations. The single sample
estimator falls short of 18,000 by 8 percent, and the shrinkage estimator overshoots 18,000 by 8
percent. The pooled sample estimator falls short of 18,000 by 14 percent. The expected number of
estimates below 10 percent is 16,000. The single sample, pooled sample, and shrinkage estimators
fall short of 16,000 by 1, 4, and 6 percent. The expected number of estimates above 13 percent is
17,000. The shrinkage estimator falls short of 17,000 by 3 percent. The single and pooled sample
estimators overshoot 17,000 by 9 and 19 percent.
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.TABLE III25

ACCURACY IN RANKING STATES ACCORDING TO THEIR POVERTY RATES

Sample

AccuracyCriterion Single Pooled Shrinkage

Rank Correlation a

Median 0.91 0.92 0.93

10thPercentile 0.87 0.90 0.90

Minimum 0.82 0.86 0.84

Percentage of Iterations
for which Shrinkage Estimator
Has Higher Rank Correlation
thanSampleEstimator 88 57 n.a.

aFor each of the 1,000 iterations, the rank correlation between the true poverty rates and, for
example, the shrinkage estimates is calculated.

n.a. = not applicable
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We could imagine a federal program providing states with higher poverty rates some kind of

economic assistance. However, program funding may be sufficient to assist only 10 states. How well

do our estimators identify the "top l0 wstates--the 10 states with the highest poverty rates?

In Table 111.26,we find that the shrinkage estimator is substantially more likely to identify 9 or

10 of the top 10 states than are the sample estimators. In about three-quarters of the iterations, the

shrinkage estimator correctly identifies at least 9 of the 10 states with the highest poverty rates. The

single and pooled sample estimators attain that standard less than half the time (in 40 and 47 percent

of the iterations, respectively). Although we found earlier that the shrinkage estimator tends to

underestimate the number of states with high poverty rates, that is, poverty rates above a specified

threshold, it fairly accurately determines which states have high poverty rates.

E. ACCURACY IN ESTIMATING ERROR

In the previous sections of this chapter, we have assessed the relative accuracy of point estimates

of state poverty rates. However, it is usual statistical practice to provide some expression of the

uncertainty associated with point estimates. A conventional expression of uncertainty is an interval

estimate, that is, a confidence interval.

For each of our estimators, we can calculate a confidence interval based on a point estimate and

its standard error, z: Do estimated standard errors accurately reflect the errors in our point

estimates? If the standard errors do not, confidence intervals will not accurately express the range

of our uncertainty, z3 In this section, we assess the accuracy of confidence intervals as expressions

of our uncertainty and the error in point estimates.

22Because each of our estimators is normally distributed, the lower bound for a 95-percent
confidence interval is [point estimate - 1.96 x standard error], and the upper bound is [point
estimate + 1.96 x standard error]. We give expressions for calculating standard errors in Appendix
A.

Z3Confidence intervals may also be inaccurate, in the sense to be defined shortly, if point
estimates deviate substantially from a normal distribution.
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TABLE III.26

ACCURACY IN IDENTIFYING THE TEN STATES WITH

THE HIGHEST POVERTY RATES

Percentage of Iterations

Numberof Sample
Top Ten States
CorrectlyIdentified Single Pooled Shrinkage

6 2 0 0

7 14 7 1

8 44 46 24

9 36 46 58

10 4 1 16
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Associated with a confidence interval is a confidence level, expressed as a percentage. A

conventional confidence level is 95 percent. The frequentist interpretation of a 95-percent

confidence interval is that if a 95-percent confidence interval is constructed from each of many

samples using the same sampling and estimation procedures, 95 percent of the confidence intervals

constructed will contain, or "cover,' the true value. Hence, a 95-percent confidence interval provides

95 percent coverage.

Do 95-percent confidence intervals derived using the single sample, pooled sample, and shrinkage

estimators provide 95 percent coverage? According to Table m.27, coverage is very close to 95

percent for the single sample and shrinkage estimators. For both estimators, over 93 percent of the

51,000 confidence intervals--one for each of the 51 states in each of the 1,000 iterations--contains the

true poverty rate. However, for the pooled sample estimator, coverage is below 85 percent, falling

substantially short of the nominal (95 percent) level?

In Table III.28, we display the distribution of state coverage rates, z5 For the single sample

estimator, coverage rates are very close to 95 percent, and they are above 90 percent for all 51 states.

For the shrinkage estimator, coverage rates are above 90 percent for 41 states? Coverage rates

are between 80 and 90 percent for 6 states and between 70 and 80 percent for the other 4 states.

For the pooled sample estimator, confidence interval coverage often falls far short of 95 percent.

Coverage is below 60 percent for 4 states and between 60 and 70 percent for 6 states. Coverage is

above 90 percent for just 27 states--barely half. The results in Tables III.27 and III.28 suggest that

the standard errors for pooled estimates and the confidence intervals constructed from the standard

errors are misleading. The standard errors are too small, and the confidence intervals are too narrow,

24For the regression estimator, coverage is only 52.8 percent. There are as many states--16--with
coverage rates below 10 percent as there are states with coverage rates above 90 percent. Standard
errors and confidence intervals for regression estimates are seriously misleading.

zsIn Table B.6 of Appendix B, we display the individual state coverage rates.

26For 16 states, the estimated confidence intervals are very conservative expressions of
uncertainty, providing greater than 97 percent coverage.
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TABI _1=_IH.27

95-PERCENT CONFIDENCE INTERVAL COVERAGE

Sample

CoverageCriterion Single Pooled Shrinkage

Percentage of All 95-Percent Confidence
IntervalsIncludingtheTrueValue 94.4 84.3 93.2
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TABI .E III.28

DISTRIBUTION OF 95-PERCENT CONFIDENCE INTERVAL
COVERAGE FATES

Number of States

Percentage of All 95-Percent Sample
Confidence Intervals

Includingthe True Value Single Pooled Shrinkage

> 97.0 0 0 16

93.0- 97.0 47 16 19

90.0- 92.9 4 11 6

80.0-89.9 0 10 6

70.0 - 79.9 0 4 4

60.0-69.9 0 6 0

<60.0 0 4 0
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giving a false sense of security. 27In contrast, standard errors and confidence intervals for the single

sample and shrinkage estimators generally reflect accurately the error and uncertainty in estimated

poverty rates.

27Itseems that the standard errors for pooled sample estimates are too small because when the
standard errors are calculated, the observations in the pooled sample are treated as though they were
obtained from a single sample. Such treatment does not take into account the bias introduced by
using data from other years.
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APPENDIX A

DETAILED SPECIFICATIONS FOR THE SIMULATION PROCEDURE



In this appendix, we provide detailed, specifications for our simulation procedure. As outlined

in Chapter II, the procedure has four basic steps: (1) specify a population, (2) draw multiple samples

from the population, (3) calculate sample and shrinkage estimates, and (4) compare the relative

accuracy of the sample and shrinkage estimates. After discussing these four steps, we describe the

additions required to obtained pooled sample estimates.

STEP 1: SPECIFY A POPULATION

We use the March 1990 CPS sample as the population, ignoring the weights on observations and

excluding unrelated individuals under age 15. This gives a total population size of approximately

158,000 individuals across the 51 states (the 50 states and the District of Columbia). Except for the

poverty income thresholds used, we specify the poverty status of each individual in the population

using the same definition employed by the Census Bureau in deriving poverty estimates from the

CPS. We compare the income of each family to a poverty threshold for that family. Individuals in

each household are classified into four family types: (1) (primary) families, (2) unrelated subfamilies,

(3) nonfamily householders (formerly, "primary individuals"), and (4) secondary individuals age 15 or

over) To determine whether a family is in poverty, we take the ratio of the family's income to the

family's poverty guideline. If the ratio is less than 1.0, the family and all individuals in the family are

in poverty. As noted in Chapter Il, we use the simplified poverty guidelines used for determining

eligibility for several federal programs as the poverty guidelines for our simulations. 2

lA primary family and a related subfamily are treated as a single family unit, and its members fall
in the first category.

ZThe guidelines depend on family size and state of residence. We averaged Office of
Management and Budget (OMB) poverty income guidelines for the first and last six months of 1989
to obtain calendar year 1989 guidelines. (The annual income data collected in the March 1990 CPS
pertain to 1989.) For residents of Alaska, the poverty guideline is $7,345 for a one-person family.
Each additional family member increases the guideline by $2,500. For residents of Hawaii, the
poverty guideline is $6,760 for a one-person family, and each additional family member increases the
guideline by $2,300. For residents of the other states and the District of Columbia, the poverty
guideline is $5,875 for a one-person family, and each additional familymember increases the guideline
by $2,0O0.
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TABLE A.1

UNWEIG_ SAMPLE COUN'I_ AND POVERTY RATES FOR 1989,
BY STATE

Sample Counts
Poverty Rate c

Division/State Total' Poor b (Percent)

Nmv England

Maine 1,603 154 9.6

New Hampshire 1,340 98 7.3

Vermont 1,259 90 7.1

Massachusetts 5,745 492 8.6

Rhode Island 1343 89 6.6

Connecticut 1365 41 3.0

Middle Atlantic

NewYork 11,687 1,625 13.9

NewJersey 6,226 492 7.9

Pennsylvania 6,488 638 9.8

East North Central

Ohio 6,518 639 9.8

Indiana 1,769 223 12.6

nlmois 6,486 769 11.9

Michigan 6332 795 12.6

Wisconsin 2,065 166 3.0

West North Central

Minnesota 1,577 176 11.2

Iowa 1,884 191 10.1

Missouri 1,722 205 11.9

North Dakota 1,996 242 12.1

SouthDakota 2,161 260 12.0

Nebraska 1,945 223 11.5

Kansas 1396 190 10.0

South Atlantic

Delaware 1,447 133 9.2

Maryland 1,532 132 8.6

District of Columbia 1390 253 18.2

Virginia 2326 253 10.9

WestVirginia 1341 272 14.8

North Carolina 6,105 698 11.4

South Carolina 2,175 341 15.7

Georgia 1,773 264 14.9

Florida 7369 933 11.9
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TABLE A.1 (continued)

Sample Counts
Poverty Rate c

Division/State Total' Poor b (Percent)

East South Central

Kentucky 1,630 258 15.8

Tennessee 1,812 300 16.6

Alabama 1,860 320 17.2

Mississippi 2,063 455 22.1

West South Central

Arkansas 2,000 336 16.8

Louisiana 1,525 357 23.4

Oklahoma 1,774 233 13.1

Texas 8,772 1,646 18.8

Mountain

Montana 2,035 293 14.4

Idaho 2,093 245 11.7

Wyoming 1,417 138 9.7

Colorado 1,690 198 11.7

New Mexico 2,459 432 17.6

Arizon a 1,886 268 14.2

Utah 1,949 142 7.3

Nevada 1,614 158 9.8

Pacific

Washington 1,835 173 9.4

Oregon 1,609 178 11.1

California 14,413 1,918 13.3

Alaska 2,122 240 11.3

Hawaii 1,515 193 12.7

SOURCE: March 1990 Current Population Survey.

'The state totals are the "tree' state population sizes in the simulations.

bThe counts of poor persons are the "tree' state poverty counts in the simulations.

°The unweighted poverty rates are the 'true' poverty rates in the simulations.
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TABLE A.2

WEIGHTED AND UNWEIGHTED POVERTY RATES FOR 1989,
BY STATE

1989 Poverty Rate (Percent)

Division/State Weighted Unweighted'

New England

Maine 9.5 9.6

New Hampshire 7.2 7.3

Vermont 7.1 7.1

Massachusetts 8.1 8.6

Rhode Island 6.4 6.6

Connecticut 2.9 3.0

Middle Atlantic

New York 12.3 13.9

New Jersey 7.5 7.9

Pennsylvania 9.8 9.8

East North Central

Ohio 9.9 9.8

Indiana 13.2 12.6

Illinois 12.0 11.9

Michigan 12.6 12.6

Wisconsin 8.0 8.0

West North Central

Minnesota 11.2 11.2

Iowa 9.9 10.1

Missouri 11.2 11.9

NorthDakota 11.8 12.1

SouthDakota 12.6 12.0

Nebraska 11.6 11.5

Kansas 10.3 10.0

South Atlantic

Delaware 9.2 9.2

Maryland 8.6 8.6

District of Columbia 18.0 18.2

Virginia 10.8 10.9

WestVirginia 14.9 14.8

North Carolina 11.6 11.4

SouthCarolina 16.3 15.7

Georgia 14.2 14.9

Florida 11.8 11.9
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found in the CPS. Specifically, if si is the standard error--calculated to reflect the complex CPS

sample design--for the weighted CPS poverty rate estimate for state i, we draw samples to ensure

that the standard errors of the sample estimates in our simulations will generally equal or be very

close to si. Thus, while simplifying our simulation procedures, we can mimic the outcome of the

procedures that are used in the CPS and make our simulations realistic.

To simplify the simulation procedure, we use stratified simple random sampling and stratify only

by state. Within strata, we sample without replacement. Given this basic sample design, we need to

specify only the sample size for each state, that is, the number of individuals to be selected. Our

expression for calculating the sample size for state i, displayed in Chapter II, can be derived easily.

Under the sample design specified for our simulations, we draw, without replacement, a simple

random sample for each state. Suppose we have obtained a sample estimate of the poverty rate for

state i An unbiased estimator of the standard error for that poverty rate is:

(ni - 1) '

where ni is the sample size for state i, Ti is the population size, and Pi is the estimated poverty rate

(expressed as a proportion). Squaring both sides of this expression and solving for the sample size

gives'

Ti [s_i + Pi (1 - Pi)]
(2) ni =

For the simulations, we set '_i equal to si, the standard error of the weighted CPS poverty rate

estimate for state i. We set Pi equal to Pi, the poverty rate (expressed as a proportion) in the

population specified in Step 1. ThisPi is the "true" poverty rate for state i in our simulations. Thus,

as given in Chapter II, our expression for calculating the sample size for state i is:
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TABLE A.3

CALCULATING STATE SAMPLE SIZES FOR SIMULATIONS

Assumed Assumed Target Sample
Population Poverty Rate Standard Error" Size for

Division/State Size (Percent) (Percent) Simulations b

New England

Maine 1,603 9.6 1.6 285

New Hampshire 1,340 7.3 1.6 232

Vermont 1,259 7.1 1.5 234

Massachusetts 5,745 8.6 0.8 1,052

Rhode Island 1'343 6.6 1.5 239

Connecticut 1,365 3.0 1.0 233

Middle Atlantic

NewYork 11,687 13.9 0.7 2,101

New Jersey 6,226 7.9 0.7 1,105

Permsylvania 6,488 9.8 0.8 1,141

East North Central

Ohio 6,518 9.8 0.8 1,099

Indiana 1,769 12.6 1.9 270

Illinois 6,486 11.9 0.9 1,056

Michigan 6,332 12.6 0.9 1,082

Wisconsin 2,065 8.0 1.4 331

West North Central

Minnesota 1,577 11.2 1.7 277

Iowa 1,884 10.1 1.5 325

Missouri 1,722 11.9 1.7 297

NorthDakota 1,996 12.1 1.6 349

South Dakota 2,161 12.0 1.6 359

Nebraska 1,945 11.5 1.6 331

Kansas 1,896 10.0 1.6 310

South Atlantic

Delaware 1,447 9.2 1.7 250

Maryland 1,532 8.6 1.6 257

Districtof Columbia 1,390 18.2 2.4 217

Virginia 2,326 10.9 1.5 383

WestVirginia 1,841 14.8 1.9 297

North Carolina 6,105 11.4 0.9 1,074

South Carolina 2,175 15.7 1.8 355

Georgia 1,773 14.9 1.8 308

Florida 7,869 11.9 0.8 1,235
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TABLE A.2 (continued)

1989 Poverty Rate (Percent)

Division/State Weighted Unweighted'

East South Central

Kentucky 15.7 15.8

Tennessee 16.7 16.6

Alabama 17.9 17.2

Mississippi 21.7 22.1

West South Central

Arkansas 17.7 16.8

Louisiana 23.1 23.4

Oklahoma 12.9 13.1

Texas 16.0 18.8

Mountain

Montana 14.5 14.4

Idaho 11.7 11.7

Wyoming 9.3 9.7

Colorado 10.8 11.7

NewMexico 17.1 17.6

Arizona 12.7 14.2

Utah 6.9 7.3

Nevada 9.6 9.8

Pacific

Washington 9.2 9.4

Oregon 10.8 11.1

California 12.0 13.3

Alaska 13.0 11.3

Hawaii 12.2 12.7

SOURCE: March 1990 Current Population Survey.

aThe unweighted poverty rates are the "true" poverty rates in the simulations.
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In Table A. 1, we display the unweighted state sample counts and poverty rates obtained from

the March 1990 CPS. The sample counts in the _Tota!" column give the state population sizes in our

simulations. The unweighted poverty rates are the "true" poverty rates in our simulations. In Table

A.2, we display weighted and unweighted state poverty rates for 1989 estimated from the March 1990

CPS. Although there are differences-generally small--between the weighted and unweighted poverty

rates for individual states, the two sets of rates are similarly centered and dispersed, and their rank

correlation is 0.98. 3 Hence, the distribution of unweighted poverty rates, which serve as the true

rates in our simulations, is very similar to the distribution of weighted poverty rates?

STEP 2: DRAW MULTIPLE SAMPLES FROM THE POPULATION

In the second step of our simulation procedure, we draw multiple samples from the population

specified in the first step. The purpose in drawing multiple samples is to determine how sampling

variability contributes to the inaccuracy of sample and shrinkage estimates. If we drew only a single

sample and discovered that the shrinkage estimates were far more accurate than the sample estimates,

we could not be sure whether the shrinkage estimator is generally more accurate or whether we had

drawn an unusual sample for which the sample estimator performed unusually poorly. Step 2 of our

simulation procedure has three parts.

Step 2a: Calculate the Sample Size for State i, i = 1, 2, ..., 51

Replicating the complex CPS sample design in our simulations is well beyond the scope of this

study. Nevertheless, we specify a sampling procedure that replicates the pattern of sampling errors

3The mean weighted poverty rate equals 12.0 percent, while the mean unweighted poverty rate
equals 12.2 percent. The median weighted poverty rate equals the median unweighted poverty rate
of 11.7 percent. Both standard deviations equal 3.9 percent, and both interquartile ranges equal 4.7
percentage points. The range of the weighted estimates is 20.2 percentage points, while the range
of the unweighted estimates is 20.4 percentage points.

4For specififing a population to use in the simulations, it does not appear that there is any loss
from ignoring the weights. However, the weighted poverty rates are a limited standard by which to
judge the unweighted poverty rates. The weighted poverty rates are fairly unreliable sample estimates
and may not accurately reflect the rates that prevailed in 1989.
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TABLE A.3 (co_)

Assumed Assumed Target Sample

Population Poverty Rate Standard Error a Size for
Division/State Size (Percent) (Percent) Simulations b

East South Central

Kentucky 1,630 15.8 2.0 287

Tennessee 1312 16.6 1.9 318

Alabama 1,860 17.2 2.0 297

Mississippi 2'063 22.1 2.1 339

West South Central

Arkansas 2,000 16.8 2.0 306

Louisiana 1,525 23.4 2.3 270

Oklahoma 1,774 13.1 1.8 307

Texas 8,772 18.8 1.0 1,327

Mountain

Montana 2,035 14.4 1.8 321

Idaho 2,093 11.7 1.6 338

Wyoming 1,417 9.7 1.8 231

Colorado 1,690 11.7 1.7 283

New Mexico 2,459 17.6 1.9 337

Arizona 1386 14.2 1.8 316

Utah 1,949 7.3 13 330

Nevada 1,614 9.8 1.6 273

Pacific

Washington 1335 9.4 1.5 304

Oregon 1,609 11.1 1.7 269

California 14,413 13.3 0.7 2,231

Alaska 2,122 11.3 1.7 295

Hawaii 1,515 12.7 1.8 272

"'l'he target standard error is the standard error for the weighted poverty rate for 1989, estimated from the March 1990
CPS.

I_I_e sample size is calculated so that a simple random sample of the indicated size will imply a standard error for an
estimated poverty rate generally equal or very close to the target standard error. The expression for calculating sample
sizes is given m the text.
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Ti [si2 * Pi (1 -Pi)]
(3) n i =

ri sz +pi (1 - pi)

We calculate si using the generalized variance function (GVF) estimated by the Census Bureau. The

form of the GVF is:

(4) si_- _p,,_(1-p,,fi,

where Pw,i is the weighted CPS poverty rate estimate (expressed as a proportion) for state i, Tw,i is

the base for this estimated poverty rate (the weighted state population), and f/ and b are GVF

parameters estimated by the Census Bureau, with values provided in CPS technical documentation.

Wolter (1985) discusses the specification, estimation, and limitations of GVFs.

According to Equations 1 and 3, ff the sample estimate for a particular iteration is equal to the

true poverty rate for state i, the standard error for that sample estimate is exactly equal to si.

Moreover, it is easy to show that the standard error will be very close to si unless the sample poverty

rate estimate differs from the true value by many percentage points, s Thus, the pattern of standard

errors for sample estimates implied by our simple sample design is similar to the pattern of standard

errors implied by the complex CPS sample design.

In Table A.3, we display the values of T,p, and s for each state and the implied sample sizes,

that is, the values for n calculated according to Equation 3. 6 State sample sizes in our simulations

range from about 220 to over 2,200.

5If the sample poverty rate estimate differs from the true value by 10 percentage points, the
standard error will generally differ from si by leas than 1 percentage point.

_l'he values for p and s in Table A.3 must be divided by 100 before applying Equation 3.
Differences between the displayed values of n and the values of n calculated from the displayed
values of T,p, and s may arise due to rounding.
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Step 2b: Draw, Without Replacement, a Simple Random Sample of Size ni for State i,
i= 1, 2,..,51

The 51 state samples constitute a single national sample. That sample is a stratified simple

random sample. Individuals in the population are stratified by state, and independent simple random

samples of individuals are drawn in each state. 7

Step 2c: Draw 1,000 Samples

We repeat Step 2b 1,000 times, drawing 1,000 independent samples. Each of the 1,000

repetitions of our simulation procedure beginning with the drawing of a sample (Step 2b) and ending

with the calculation of sample and shrinkage estimates (Step 3) is an 'iteration."

STEP 3: CALCULATE SAMPLE AND SHRINKAGE ESTIMATES

Not counting the pooled sample estimates, we calculate 1,000 sets of sample and shrinkage

estimates of state poverty rates, one set of 51 sample estimates and one set of 51 shrinkage estimates

per iteration. To derive shrinkage estimates, we use an Empirical Bayes shrinkage estimator that

combines sample and regression estimates. This estimator was used by Schirm, Swearingen, and

Hendricks (1992) to derive state estimates of poverty, FSP eligibility, and FSP participation. Prior

to calculating shrinkage estimates, we must calculate sample estimates and their standard errors and

specify the regression model to be used.

?To draw a sample of ni individuals for state i, we use the SAS function RANUNI. We draw a
random number uniformly distributed on the interval (0,1). Multiplying the random number by Ti
and adding 1 to the product, we obtain a random number uniformly distributed on the interval
(1,Ti+ 1). Then, we truncate the transformed random number to obtain a discrete random number

uniformly distributed over the integers {1, 2, ..., Ti}. We repeat these steps until ni unique random
numbers are obtained. For example, to select a sample for Maine, we generate 285 unique random
numbers distributed over the integers from I to 1,603. Those numbers index the individuals selected
for that sample. Thus, if 13 is drawn, the 13th individual is included in the sample for Maine.
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Step 3a: Calculate the Sample Estimates

For state i, the sample estimate of the proportion poor is the number of individuals in the sample

who are poor divided by the sample size, ni. Expressed as a percentage, the poverty rate is the

proportion poor multiplied by 100. We calculate standard errors for the sample estimates using

Equation (1), which gives the standard error for the estimated proportion poor. Multiplying the

standard error for the estimated proportion poor by 100 gives the standard error for the estimated

poverty rate.

Step 3b: Select the Best-FiRing Regression Model

As described in Chapter I, our regression model regresses the 51 sample estimates of state

poverty rates on symptomatic indicators. The symptomatic indicators measure state characteristics

that are likely to be associated with interstate differences in poverty rates. Although we do not need

to calculate regression estimates prior to calculating shrinkage estimates, we do need to specify the

symptomatic indicators that are included in the "best-fitting" regression model in a particular

iteration, s'9 From a set of potential symptomatic indicators, we will include those for which the

SAs shown in Step 3c, we calculate shrinkage estimates using an expression that incorporates the
estimation of the best-fitting regression model.

9Although the purpose of this study is to compare the accuracy of sample and shrinkage estimates,
we report in Chapter III selected results pertaining to the relative accuracy of regression estimates.
The expression for our regression estimator is:

L x(x'vx)-xqgv,,

where X, D, and Ys are defined under Step 3c. Our regression estimator weights observations by the
inverses of the standard errors for the sample estimates of state poverty rates. The variance-
covariance matrix of our regression estimator is:

Vr = [(Ys - Yr)/D(Ys - Yr)] x(X'DX)-IX / ,.__._.

(continued...)
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model obtained is parsimonious and provides a good fit. Thus, we will not include symptomatic

indicators that improve the fit only marginally. We seek a model that accounts for much of the

interstate variation in poverty rates with a small number of symptomatic indicators.

We allow for up to five symptomatic indicators: (1) the proportion of the state population

receiving SSI, (2) state per capita total personal income, (3) the state crime rate, (4) a dummy

variable equal to one for the New England states, and (5) a dummy variable equal to one if at least

1 percent of the state's total personal income is derived from the oil and gas extraction

industry, l°'n Our model-fitting procedure selects the model that maximizes:

51-1 ] (l-R2),(5) _2 = 1 - 51 -k - 1

where k is the number of symptomatic indicators in the regression model (ranging from one to five),

and R 2 is the usual coefficient of multiple determination. Whereas the addition of a symptomatic

indicator always increases R2, _2 will decrease if the improvement in fit, as measured by R2, is

small. 12 We repeat our model-fitting procedure for each iteration.

9(...continued)
where K is the number of variables (symptomatic indicators plus an intercept) in the regression
model.

mSchirm, Swearingen, and Hendricks (1992) examined these and other symptomatic indicators.

llData on the number of persons receiving SSI are from Table 9.B1, "Number of Persons
Receiving Federally Administered Payments and Total Amount of Payments, by Reason for
Eligibility," in U.S. Department of Health and Human Services (1990, p. 299). Data on total personal
income and total personal income derived from the oil and gas extraction industry are from Table 1,
l'otal and Per Capita Personal Income by State and Region, 1985-90," and Table 3, "Personal Income
by Major Source and Earnings by Industry, 1988-90," in U.S. Department of Commerce (1991c, pp.
30 and 32-41). Data on crime rates (number of violent and property crimes per 100,000 persons) are
from Table 294 "Crime Rates by State, 1985 to 1989, and by Type, 1989," in U.S. Department of
Commerce (1991b, p. 177). For constructing the first two symptomatic indicators, state resident
population totals are from Table 26, "Resident Population--States and Puerto Rico: 1960 to 1990,"
in U.S. Department of Commerce (1991b, pp. 20-21).

12 _2 adjusts R2 for the degrees of freedom used to fit the model.
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Step 3c: Calculate the Shrinkage Estimates

We use an Empirical Bayes shrinkage estimator. This estimator was used by Eficksen and

Kadane (1985, 1987) to estimate population undercounts in the 1980 census for 66 areas covering

the entire U.S. and by Schirm, Swearingen, and Hendricks (1992) to estimate state poverty rates, FSP

eligibility counts, and FSP participation rates. It was originally developed by DuMouchel and Harris

(1983) based on the pioneering work of Lindley and Smith (1972).

The expression for our shrinkage estimator is:

lp Dr,,(6) r,:

where ¥c is a (51 x 1) vector of shrinkage estimates, and ¥s is a (51 x 1) vector of sample estimates.

D is a (51 x 51) diagonal matrix with diagonal element (i, 0 equal to one divided by the variance

(standard error squared) of the sample estimate for state i. P = I - X(X_X)-lX ' is a (51 x 51)

matrix, where I is a (51 x 51) identity matrix (all diagonal elements equal one, and all other elements

equal zero) and X is a (51 × K) matrix containing data for each state on a set of k = K - 1

symptomatic indicators. 13 u2 is a scalar mea._ufing the interstate variability in the sample estimates

of poverty rates not explained by the symptomatic indicators. Thus, u2 reflects the lack of fit of the

regression model. We estimate u2 by maximizing the following likelihood function with respect to

U'

where W = (D -1 + u21) -1 and S = W - WX(X'WX)-IX'W. [W[ lrz is the square root of the

determinant of W. The variance-covariance matrix of our shrinkage estimator is:

13The other column of X consists of all ones and allows for an intercept in the regression model.
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[ Il
lp

(8) v, -- p. D

Standard errors of the 51 state shrinkage estimates are given by the square roots of the diagonal

elements of Vo a (51 x 51) matrix, la

STEP 4: COMPARE THE RELATIVE ACCURACY OF SAMPLE AND SHRINKAGE ESTIMATES

We compare the relative accuracy of the sample and shrinkage estimates according to a wide

variety of accuracy criteria, including root mean squared errors (RMSEs) and mean absolute errors

(MAEs). An RMSE is the square root of the average squared deviation between the estimates and

the true values. An MAE is the average absolute deviation between the estimates and the true

values. For all assessments of accuracy, the true poverty rates are the poverty rates in the population

specified in Step 1.

As we discuss in Chapter III, we can calculate a RMSE (or MAE) for a given state by

aggregating errors across iterations, or we can calculate a RMSE (or MAE) for a given iteration by

aggregating errors across states. The RMSE for state i is:

(9) RMSEi= i''T--0001,

lnThe "final answer" from a Bayesian analysis is a distribution for the true values that we are
trying to estimate. The distribution is conditional on the observed data (sample estimates and

symptomatic indicators). Our shrinkage estimator, Ye, is the mean of such a distribution, and V¢ is
the variance-covariance matrix of the distribution. Given certain assumptions, which were made by
DuMouchel and Harris (1983) and Ericksen and Kadane (1985) and which we also make, the
distribution is normal. The distribution characterizes the uncertainty that remains after the observed
data are taken into account.
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where Pij is the estimated poverty rate, pi is the true poverty rate, and iterations are indexed byj. 15

The MAE for state i is:

1,000

E IP,j- pil
(10) MAE_ -- j ' _ 1,000

Because states are different sizes, aggregating errors across states for a given iteration raises the

issue of how to weight the state errors, ff state errors are equally weighted, a one percentage point

error in the estimate for a small state will make the same contribution to the RMSE (or MAE) as

a one percentage point error in the estimate for a large state, even though the error for the small

state may have virtually no impact on, for example, the estimate of the national poverty rate.

Alternatively, we could differentially weight state errors, giving greater weight to the errors for large

states. Thus, the RMSE for iteration j is:

(11) RMSEj =,l_
_.i- 1

where wi is the weight for state i. The MAE for iteration j is:

51

(12) MAEj = _ %lPij - Pil ·
i-1

We consider three weighting schemes: (1) weighting states equally, (2) weighting states by

population shares, and (3) weighting states by poverty shares. When state errors are weighted

_SWhen we aggregate errors across iterations for a given state, we can decompose the mean
squared error--the RMSE squared--for a state into the sum of the bias squared and the standard
deviation squared. The bias of an estimator is the mean error. Although its relevance to an
evaluation of accuracy is limited, we do report state-specific biases for each estimator in Appendix
B. For a given estimator, the bias for state i is:

1,000 1,000

E Q_ij - Pi) E _ij

bias i = j. 1 _ j.1
1,000 1,000 - Pi'
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equally, wi = 1/51 for all states, and we get a conventional mean of squared or absolute errors. The

population share weights and the poverty share weights are displayed in Table A.4. The population

share weight for state i is obtained by dividing the true state i population by the true U.S. population.

In other words, it is the share of all individuals in the population specified in Step 1 living in state

i. The poverty share weight for state i is obtained by dividing the true state i poverty count by the

true U.S. poverty count. In other words, it is the share of all poor individuals in the population

specified in Step 1 living in state i. With the population share weights, errors for states with more

people are weighted more heavily, while with the poverty share weights, errors for states with more

poor people are weighted more heavily. States with more people also tend to have more poor

people, so the population share and poverty share weights are closely associated.

In addition to calculating RMSEs and MAEs by aggregating estimation errors across iterations

or across states, we calculate these measures of error by aggregating across all iterations and all states.

Our expressions for the RMSE and MAE are:

(13) RMSE -- IL, l wi. j., i,60

and

s, ,,ooo _p,I
(14) MAE = _lwi _1 l',l_i- j-

POOLED SAMPLE ESTIMATION

To obtain pooled sample estimates, we must add to the first three steps of our simulation

procedure. In Step 1, we must define "populations" from which to draw samples? To simulate the

most often used procedure of pooling three consecutive annual samples, we use the nonoverlapping

16Because many individuals enter the U.S. population (through birth and immigration) and many
individuals exit the U.S. population (through death and emigration) during any three-year period, the
concept of a population for pooled sample estimation is not well-defined. State-to-state migration
and changing family composition present further conceptual difficulties.
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TABLE A.4

WEIGHTS USED TO CALCULATE ROOT MEAN

SQUARED ERRORS AND MEAN ABSOLUTE ERRORS

Population Share Poverty Share
Division/State Weight' Weigh ts

New England

Maine 0.011 0.010

New Hampshire 0.009 0.008

Vermont 0.009 0.008

Massachusetts 0.040 0.036

Rhode Island 0.009 0.009

Connecticut 0.009 0.009

Middle Atlantic

New York 0.080 0.074

New Jersey 0.042 0.039

Pennsylvania 0.043 0.041

East North Central

Ohio 0.042 0.041

Indiana 0.010 0.011

Illinois 0.040 0.041

Michigan 0.041 0.040

Wisconsin 0.013 0.013

West North Central

Minnesota 0.011 0.010

Iowa 0.012 0.012

Missouri 0.011 0.011

North Dakota 0.013 0.013

SouthDakota 0.014 0.014

Nebraska 0.013 0.012

Kansas 0.012 0.012

South Atlantic

Delaware 0.009 0.009

Maryland 0.010 0.010

District of Columbia 0.008 0.009

Virginia 0.015 0.015

WestVirginia 0.011 0.012

NorthCarolina 0.041 0.039

SouthCarolina 0.013 0.014

Georgia 0.012 0.011

Florida 0.047 0.050
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TABLE A.4 (co_.,__d)

Population Share Poverty Share
Division/State Weight a Weight b

East South Central

Kentucky 0.011 0.010

Tennessee 0.012 0.011

Alabama 0.011 0.012

Mississippi 0.013 0.013

West South Central

Arkansas 0.012 0.013

Louisiana 0.010 0.010

Oklahoma 0.012 0.011

Texas 0.050 0.056

Mountain

Montana 0.012 0.013

Idaho 0.013 0.013

Wyoming 0.009 0.009

Colorado 0.011 0.011

NewMexico 0.013 0.016

Arizona 0.012 0.012

Utah 0.013 0.012

Nevada 0.010 0.010

Pacific

Washington 0.012 0.012

Oregon 0.010 0.010

California 0.085 0.091

Alaska 0.011 0.013

Hawaii 0.010 0.010

aThe population share weight is obtained by dividing the "true" state population by the "true" U.S. population.

_r'ne poverty share weight is obtained by dividing the "true" state poverty count by the "true" U.S. poverty count.
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TABLE A.4

WEIGHTS USED TO CALCULATE ROOT MEAN

SQUARED ERRORS AND MEAN ABSOLUTE ERRORS

Population Share Poverty Sbare
Division/State Weight' Weigh tb

New England

Maine 0.011 0.010

New Hampshire 0.009 0.008

Vermont 0.009 0.008

Massachusetts 0.040 0.036

Rhode Island 0.009 0.009

Connecticut 0.009 0.009

Middle Atlantic

New York 0.080 0.074

New Jersey 0.042 0.039

Pennsylvania 0.043 0.041

East North Central

Ohio 0.042 0.04 I

Indiana 0.010 0.011

Illinois 0.040 0.041

Michigan 0.041 0.040

Wisconsin 0.013 0.013

West North Central

Minnesota 0.011 0.010

Iowa 0.012 0.012

Missouri 0.011 0.011

North Dakota 0.013 0.013

SouthDakota 0.014 0.014

Nebraska 0.013 0.012

Kansas 0.012 0.012

South Atlantic

Delaware 0.009 0.009

Maryland 0.010 0.010

DistrictofColumbia 0.008 0.009

Virginia 0.015 0.015

WestVirginia 0.011 0.012

North Carolina 0.041 0.039

SouthCarolina 0.013 0.014

Georgia 0.012 0.011

Florida 0.047 0.050
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for the pooled sample estimate by multiplying the standard error for the single sample estimate

by _ .19

19According to Equation (1), if we ignore the finite population correction (fpc), 1 - (nilTi),

doubling the sample size multiplies the standard error by

i2 2(2n_- 1) '

which very nearly equals _ for the values ofn i in our simulations. Because the population from
which we draw the pooled sample is not well-defined, we do not adjust the fpc.
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observations from the March 1989 and March 1991 CPS samples, ignoring the weights on

observations and excluding unrelated individuals under age 157 From these nonoverlapping

observations, we draw stratified simple random samples for each iteration. In Step 2, we draw a

sample of nj/2 individuals from the March 1989 CPS observations and a sample of ni/2 individuals

from the March 1991 CPS observations for state i? These ni additional individuals are pooled with

the ni individuals selected from the March 1990 CPS. Thus, the pooled sample estimate is based on

twice as many observations as the single sample estimate. Population and sample sizes for each of

the three years pooled are displayed in Table A.5. Poverty rates for each of the three years are

displayed in Table A.6 with the weighted average poverty rates obtained when the populations are

pooled. In Step 3, the pooled sample estimate of the proportion poor is the number of individuals

in the pooled sample who are poor divided by the sample size, 2.ni. We estimate the standard error

17To determine the poverty status of individuals in the population based on the March 1989 CPS,
we averaged OMB poverty income guidelines for the first and last six months of 1988 to obtain
calendar year 1988 guidelines. (The annual income data collected in the March 1989 CPS pertain
to 1988.) For residents of Alaska, the poverty guideline is $7,035 for a one-person family. Each
additional family member increases the guideline by $2,415. For residents of Hawaii, the poverty
guideline is $6,480 for a one-person family, and each additional family member increases the guideline
by $2,220. For residents of the other states and the District of Columbia, the poverty guideline is
$5,635 for a one-person family, and each additional family member increases the guideline by $1,930.
To determine the poverty status of individuals in the population based on the March 1991 CPS, we
averaged OMB poverty income guidelines for the first and last six months of 1990 to obtain calendar

year 1990 guidelines. (The annual income data collected in the March 1991 CPS pertain to 1990.)
For residents of Alaska, the poverty guideline is $7,660 for a one-person family. Each additional
family member increases the guideline by $2,615. For residents of Hawaii, the poverty guideline is
$7,050 for a one-person family, and each additional family member increases the guideline by $2,405.
For residents of the other states and the District of Columbia, the poverty guideline is $6,130 for a

one-person family, and each additional family member increases the guideline by $2,090.

lsIf ni is odd, we draw (ni + 1)/2 individuals from one CPS and (ni - 1)/2 individuals from the
other CPS. Which sample size was rounded up was determined randomly.
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TABLE A.5 (cont/nued)

Assumed Population Sizes a Sample Sizes for Simulations b

Division/State Year I Year 2 Year 3 Year 1 Year 2 Year 3

East South Central

Kentucky 920 1,630 859 144 287 143

Tennessee 906 1312 936 159 318 159

Alabama 953 1360 967 148 297 149

Mississippi 1,054 2,063 1,040 170 339 169

West South Central

Arkansas 977 2,000 1,042 153 306 153

Louisiana 879 1,525 716 135 270 135

Oldahoma 883 1,774 819 154 307 153

Texas 4,297 8,772 4,443 664 1327 663

Mountain

Montana 1,015 2,035 978 160 321 161

Idaho 940 2,093 1,112 169 338 169

Wyoming 633 1,417 726 116 231 115

Colorado 834 1,690 924 142 283 141

New Mexico 1,123 2,459 1,162 168 337 169

Arizona 980 1,886 833 158 316 158

Utah 908 1,949 988 165 330 165

Nevada 852 1,614 886 136 273 137

Pacific

Washington 850 1335 978 152 304 152

Oregon 770 1,609 743 134 269 135

California 3,972 14,413 7,448 1,116 2,231 1.115

Alaska 1,167 2,122 1,059 148 295 147

Hawaii 732 1,515 651 136 272 136

'The Year 2 assumed population size is the assumed population size used for simulating single sample estimation. It is
the unweighted number of persons in the March 1990 CPS. The Year 1 and Year 3 assumed population sizes are the
unweighted numbers of persons in the March 1989 CPS and the March 1991 CPS living in households that were not in
the March 1990 CPS.

bThe Year 2 sample size is the sample size used for simulating single sample estimation. The Year 1 and Year 3 sample
sizes were set equal to one-half the Year 2 sample size. One of the two (Year 1 or Year 3) sample sizes was rounded
up, and the other was rounded down if the Year 2 sample size is odd. Which sample size was rounded up was determined
at random.
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TABLE A.5

POPULATION AND SAMPLE SIZES FOR SIMULATING
POOl 1713 SAMPLE ESTIMATION

Assumed Population Sizes a Sample Sizes for Simulations b

Division/State Year 1 Year 2 Year 3 Year 1 Year 2 Year 3

New England

Maine 728 1,603 787 142 285 143

New Hampshire 678 1,340 490 116 232 116

Vermont 638 1,259 582 117 234 117

Massachusetts 2,882 5,745 2,795 526 1,052 526

Rhode Island 676 1,343 572 120 239 119

Connecticut 641 1,365 687 116 233 117

Middle Atlantic

New York 3,398 11,687 5,882 1,050 2,101 1,051

New Jersey 3.018 6,226 3,107 552 1,105 553

Pennsylvania 3,184 6,488 3,321 570 1.141 571

East North Central

Ohio 3,269 6,518 3,404 550 1,099 549

Indiana 907 1,769 808 135 270 135

Illinois 3,259 6,486 3,188 528 1,056 528

Michigan 2,965 6332 3,108 541 1,082 541

Wisconsin 1,025 2,065 1,059 166 331 165

West North Central

Minnesota 883 1.577 782 138 277 139

Iowa 915 1,884 958 162 325 163

Missouri 885 1,722 787 148 297 149

NorthDakota 1.081 1,996 1,037 174 349 175

SouthDakota 1.075 2.161 954 180 359 179

Nebraska 955 1.945 1.070 166 331 165

Kansas 839 1,896 984 155 310 155

South Atlantic

Delaware 693 1,447 658 125 250 125

Maryland 762 1,532 665 128 257 129

Distnct of Columbia 667 1390 542 108 217 109

Virginia 1,097 2,326 1.120 192 383 191

WestVirginia 904 1.841 972 148 297 149

NorthCarolina 2,847 6,105 2,960 537 1.074 537

SouthCarolina 1,011 2.175 947 178 355 177

Georgia 881 1,773 867 154 308 154

Fl orida 3,627 7,869 3,981 618 1,235 617
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TABLE A.6 (continue.d)

Weighted
Division/State Year 1 Year 2 Year 3 Average

East South Central

Kentucky 17.4 15.8 18.4 16.8

Tennessee 17.7 16.6 15.8 16.7

Alabama 17.1 17.2 21.4 18.2

Mississippi 29.1 22.1 25.3 24.6

West South Central

Arkansas 16.4 16.8 19.6 17.4

Louisiana 22.6 23.4 25.3 23.7

Oklahoma 17.0 13.1 13.8 14.2

Texas 19.4 18.8 17.0 18.5

Mountain

Montana 15.0 14.4 15.1 14.7

Idaho 11.0 11.7 12.0 11.6

Wyoming 8.4 9.7 14.9 10.7

Colorado 12.0 11.7 14.1 12.4

New Mexico 19.9 17.6 23.5 19.6

Arizona 13.8 14.2 13.8 14.0

Utah 9.6 7.3 7.3 7.9

Nevada 6.6 9.8 10.9 9.3

Pacific

Washington 7.6 9.4 8.3 8.7

Oregon 11.6 11.1 8.1 10.5

California 13.8 13.3 14.7 13.8

Alaska 13.7 11.3 11.7 12.0

Hawaii 15.2 12.7 11.4 13.0

NOTE: The Year 2 poverty rates are the true poverty rates in the simulations. The Year 1 and Year 3 poverty rates
are the poverty rates in the populations from which samples are drawn for pooling with the sample for Year
2. The weighted average poverty rate is obtained by giving weights of 1/4, 1/2, and 1/4 to the poverty rates for
Years 1, 2, and 3, respectively.
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TABLE A.6

POVERTY RATF_S IN THE POOLED POPULATION

Weighted
Division/State Year 1 Year 2 Year 3 Average

New England

Maine 15.7 9.6 11.7 11.6

New Hampshire 5.6 7.3 7.1 6.8

Vermont 7.8 7.1 10.7 8.2

Massachusetts 8.4 8.6 9.3 8.7

Rhode Island 10.2 6.6 6.6 7.5

Connecticut 3.9 3.0 8.9 4.7

Middle Atlantic

NewYork 14.3 13.9 14.9 14.2

NewJersey 6.4 7.9 9.1 7.8

Pennsylvania 9.2 9.8 10.9 9.9

East North Central

Ohio 13.6 9.8 9.6 10.7

Indiana 8.3 12.6 14.6 12.0

Illinois 13.0 11.9 13.7 12.6

Michigan 10.8 12.6 14.1 12.5

Wisconsin 7.9 8.0 9.0 8.2

West North Central

Minnesota 14.5 11.2 15.2 13.0

Iowa 9.0 10.1 9.9 9.8

Missouri 10.1 11.9 12.1 11.5

North Dakota 12.6 12.1 12.7 12.4

South Dakota 13.7 12.0 14.0 12.9

Nebraska 8.1 11.5 8.1 9.8

Kansas 9.7 10.0 9.5 9.8

South Atlantic

Delaware 4.0 9.2 7.6 7.5

Maryland 11.9 8.6 7.2 9.1

District of Columbia 15.4 18.2 19.7 17.9

Virginia 7.4 10.9 9.6 9.7

WestVirginia 17.1 14.8 19.9 16.6

North Carolina 12.5 11.4 13.6 12.2

South Carolina 10.1 15.7 13.7 13.8

Georgia 13.1 14.9 17.8 15.2

Florida 14.2 11.9 14.0 13.0
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APPENDIX B

ADDITIONAL TABLES OF SIMULATION RESULTS



In this appendix, we present additional tables of simulation results. In Table B.1, we display for

each state and both sample estimators the percentage of iterations for which the shrinkage estimate

is more accurate than the sample estimate. Such findings should be interpreted cautiously. We

report these and the other state-specific results in this appendix only to show how the effects of

shrinkage might vary from state to state, not to forecast the effect of shrinkage for any particular

state. In Table B.2, we display RaMSEs and MAEs for states. Ratios of shrinkage RMSEs and MAEs

to sample RMSEs and MAEs are presented in Table B.3. The percentage changes in RMSEs and

MAEs due to shrinkage that we reported in Chapter HI can be calculated from these ratios. A ratio

of 0.80 indicates a 20 percent reduction in the RMSE or MAE. When there are many estimates of

a particular quantity, for example, 1,000 estimates of a state's poverty rate, we can decompose the

mean squared error (MSE) of the estimates into the sum of the bias of the estimates squared plus

the standard deviation of the estimates squared. 1 In Table B.4, we display state-specific biases and

standard deviations for the single sample, pooled sample, and shrinkage estimators. Frequency

distributions of absolute biases are shown in Table B.5. According to Table B.5, the median bias of

the single sample estimator is roughly 0, as expected. The median bias of the shrinkage estimator is

just under 0.3 percentage points, and the median bias of the pooled sample estimator is just over 0.6

percentage points. While the biases in the shrinkage estimator are attributable to regression toward

the mean, the source of the biases in the pooled sample estimator can be found in Table A.6 in

Appendix A. The pooled sample estimator is an unbiased estimator of the weighted average of the

poverty rates for the three years that we are pooling. However, because poverty rates generally

change--often substantially--from year to year, that weighted average is different from the poverty rate

for the middle year, the year for which we seek an estimate. As shown in Table A.6 and as confirmed

by Table B.5, many of the differences are large. In the last table in this appendix, Table B.6, we

display confidence interval coverage rates for states.

1The MSE is the RMSE squared, and the bias is the average error. An expression for calculating
bias is given in Appendix A.
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TABLE B.1 (continued)

Sample

Division/State Single Pooled

East South Central

Kentucky 86.2 67.1

Tennessee 66.6 53.6

Alabama 88.4 68.6

Mississippi 57.2 76.1

West South Central

Arkansas 85.9 65.9

Louisiana 34.0 27.4

Oklahoma 35.4 39.8

Texas 39.6 35.4

Mountain

Montana 29.5 26.6

Idaho 64.0 50.2

Wyoming 41.7 44.0

Colorado 57.3 50.9

New Mexico 79.9 81.0

A_ona 43.5 36.9

Utah 34.1 27.5

Nevada 88.4 64.2

Pacific

Washington 55.5 52.2

Oregon 91.7 67.9

California 43.0 55.1

Alaska 69.3 57.9

Hawaii 45.3 37.4

Median 57.2 57.1

NOTE: The shrinkage estimate is more accurate than the sample estimate if the shrinkage estimate is closer to the true
poverty rate in absolute value.
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Table B.1

PERCENTAGE OF ITERATIONS FOR WHICH SHRINKAGE
ESTIMATE IS MORE ACCURATE THAN SAMPLE ESTIMATE,

BY STATE

Sample

Division/State Single Pooled

New England

Maine 76.4 79.2

New Hampshire 28.8 23.1

Vermont 54.6 60.7

Massachusetts 57.4 41.4

Rhode Island 47.1 51.7

Connecticut 54.1 86.2

Middle Atlantic

NewYork 49.8 51.4

NewJersey 58.6 37.5

Pennsylvania 61.3 42.4

East North Central

Ohio 54.2 75.0

Indiana 36.8 35.3

nlinois 55.2 63.7

Michigan 58.8 41.9

Wisconsin 30.4 22.1

West North Central

Minnesota 45.4 66.3

Iowa 89.9 57.1

Missouri 95.7 62.9

North Dakota 45.6 45.3

South Dakota 63.7 56.6

Nebraska 47.5 82.2

Kansas 88.6 58.6

South Atlantic

Delaware 84.9 78.8

Maryland 74.8 58.2

District of Columbia 31.6 22.9

Virginia 84.1 74.3

WestVirginia 84.4 78.4

North Carolina 36.2 57.6

SouthCarolina 90.8 82.8

Georgia 87.4 61.9

Florida 47.2 82.9
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TABLE B.2 (continued)

Root Mean Squared Error Mean Absolute Error

Sample Sample

Division/State Single Pooled Shrinkage Single Pooled Shrinkage

East South Central

Kentucky 1.972 1.742 1.083 1.577 1.420 0.859

Tennessee 1.832 1.278 1.129 1.466 1.016 0.907

Alabama 2.004 1.826 1.082 1388 1.464 0.842

Mississippi 1.985 2.931 1.497 1.572 2.577 1.207

West South Central

Arkansas 1.980 1.606 1.082 1.605 1.286 0.861

Louisiana 2.408 1.737 2339 1.917 1382 2.062

Oklahoma 1.829 1.721 1.925 1.470 1396 1.634

Texas 0.974 0.744 1.008 0.792 0390 0.816

Mountain

Montana 1.800 1328 1.969 1.455 1.061 1.756

Idaho 1.611 1.127 1.098 1.297 0.897 0.874

Wyoming 1.804 1.635 1.753 1.431 1305 1.459

Colorado 1.712 1.402 1.290 1.368 1.108 1.049

New Mexico 1.893 2.544 1.121 1.487 2.211 0.870

Arizona 1.760 1.217 1.537 1.409 0.970 1.272

Utah 1.341 1.080 1.593 1.050 0.858 1324

Nevada 1.611 1.251 0.966 1.276 1.002 0.748

Pacific

Washington 1.546 1.300 1.183 1.233 1.059 0.960

Oregon 1.779 1.348 0.986 1.425 1.104 0.769

California 0.663 0.674 0.642 0.533 0.557 0.522

Alaska 1.648 1.423 1.226 1300 1.152 0.954

Hawaii 1.820 1.296 1.454 1.456 1.026 1.221
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Table B.2

ROOT MEAN SQUARED ERRORS AND MEAN ABSOLUTE ERRORS,
BY STATE

Root Mean Squared Error Mean Absolute Error

Sample Sample

Division/State Single Pooled Shrinkage Single Pooled Shrinkage

New England

Maine 1.585 2.365 1.065 1.270 2.078 0.844

New Hampshire 1.518 1.156 1.743 1.226 0.926 1.517

Vermont 1.496 1.577 1.248 1.186 1.291 1.013

Massachusetts 0.772 0.577 0.696 0.615 0.464 0.555

Rhode Island 1.521 1.430 1372 1.209 1.145 1.121

Connecticut 1.038 1.899 0.964 0.810 1.695 0.771

Middle Atlantic

New York 0.721 0.621 - 0.660 0.571 0.501 0.525

New Jersey 0.734 0.535 0.677 0.592 0.426 0.547

Pennsylvania 0.772 0.584 0.688 0.618 0.473 0.552

East North Central

Ohio 0.836 1.088 0.739 0.674 0.941 0.595

Indiana 1.822 1.403 1.634 1.438 1.130 1.414

nlinois 0.913 1.018 0.771 0.730 0.853 0.614

Michigan 0.892 0.620 0.745 0.722 0.500 0.603

Wisconsin 1.406 0.980 1.723 1.110 0.782 1.476

West North Central

Minnesota 1.687 2.253 1.349 1351 1.927 1.117

Iowa 1.553 1.143 0.962 1.254 0.917 0.771

Missouri 1.740 1.254 0.968 1373 1.003 0.753

North Dakota 1.514 1.153 1.245 1.194 0.920 1.023

South Dakota 1.595 1.449 1.121 1.284 1.161 0.908

Nebraska 1.559 1.963 1.243 1.252 1.721 1.029

Kansas 1.562 1.143 0.947 1.242 0.911 0.742

South Atlantic

Delaware 1.635 1.979 0.970 1300 1.722 0.765

Maryland 1.593 1.235 1.044 1.282 0.995 0.834

Districtof Columbia 2.393 1.640 2.460 1.916 1.299 2.179

Virginia 1.475 1.519 0.965 1.186 1.285 0.769

West Virginia 1.930 2312 1.103 1.541 1.961 0.880

North Carolina 0.889 1.040 0.952 0.699 0.880 0.775

South Carolina 1.804 2.237 1.017 1.458 1.947 0.804

Oeorgia 1.830 1.359 1.021 1.479 1.075 0.815

Florida 0.825 1314 0.805 0.655 1.182 0.643
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TABLE B.3 (continued)

Ratio of Sh_-inkage RMSE Ratio of Shrinkage MAE
to Sample RMSE to Sample MAE

State Single Pooled Single Pooled

East South Central

Kentucky 0.549 0.622 0344 0.605

Tennessee 0.616 0.884 0.619 0.893

Alabama 0.540 0392 0.530 0.575

Mississippi 0.754 0.511 0.768 0.469

West South Central

Arkansas 0.546 0.673 0336 0.669

Louisiana 0.971 1.347 1.076 1.492

Oklahoma 1.053 1.119 1.111 1.170

Texas 1.035 1355 1.031 1384

Mountain

Montana 1.094 1.482 1.207 1.655

Idaho 0.682 0.974 0.674 0.974

Wyoming 0.972 1.073 1.019 1.118

Colorado 0.753 0.920 0.767 0.947

New Mexico 0.592 0.441 0385 0393

Arizona 0.873 1.263 0.903 1311

Utah 1.188 1.475 1.261 1.543

Nevada 0.600 0.772 0.586 0.747

Pacific

Washington 0.765 0.910 0.779 0.906

Oregon 0.554 0.732 0.540 0.697

' Cali fornia 0.969 0.953 0.979 0.937

Alaska 0.744 0.862 0.734 0.828

Hawaii 0.799 1.122 0.838 1.190

Median 0.800 0.862 0.835 0.841
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Table B3

ROOT MEAN SQUARED ERROR AND MEAN ABSOLUTE ERROR RATIOS,
BY STATE

Ratio of $1,;_kage RMSE Ratio of Shrinkage MAE
to Sample RMSE to Sample MAE

State Single Pooled Single Pooled

New England

Maine 0.672 0.450 0,665 0.406

New Hampshire 1.149 1.507 1.237 1.637

Vermont 0.834 0.791 0.854 0.785

Massachusetts 0.902 _ 0.903 1.198

Rhode Island 0.902 0,960 0.927 0.979

Connecticut 0.929 0.508 0.952 0,455

Middle Atlantic

New York 0.916 1.063 0.920 1.048

New Jersey 0.923 1.266 0.923 1.284

Pennsylvania 0.891 1.177 0.894 1.168

East North Central

Ohio 0.884 0.679 0.883 0.633

Indiana 0.897 1.164 0.983 1.251

Illinois 0.844 0.757 0.841 0.720

Michigan 0.836 1.203 0.835 1.205

Wisconsin 1.226 1.759 1330 1.887

West North Central

Minnesota 0.800 0.599 0.827 0.580

' Iowa 0.620 0.842 0.615 0.841

Missouri 0.556 0.772 0.548 0.750

North Dakota 0.823 1.080 0.857 1.112

South Dakota 0.702 0.773 0.707 0.782

Nebraska 0.797 0.633 0.822 0.598

Kansas 0.606 0.828 0.598 0.815

South Atlantic

Delaware 0.593 0.490 0.589 0.444

Maryland 0.655 0.845 0.651 0.838

District of Columbia 1.028 1.500 1.137 1.678

Virginia 0.654 0.635 0.648 0.599

West Virginia 0.571 0.477 0.571 0.449

North Carolina 1.071 0.915 1.108 0.880

South Carolina 0.564 0.455 0.551 0.413

Georgia 0.558 0.751 0.551 0.758

Florida 0.975 0.613 0.982 0.544
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TABLE B.4 (cominued)

Bias' Standard Deviation b

Sample Sample

Division/State Single Pooled Shrinkage Single Pooled Shrinkage

East South Central

Kentucky -0.078 1.058 -0.076 1.971 1.385 1.08 1

Tennessee 0.049 0.089 -0.605 1.833 1.275 0.954

Alabama 0.013 1.038 -0.011 2.005 1.503 1.082

Mississippi 0.012 2.543 -0.830 1.986 1.458 1.246

West South Central

Arkansas 0.076 0.633 0.204 1.979 1.477 1.063

Louisiana 0.010 0302 -Z004 2.409 1.712 1.207

Oldahoma 0.112 1.149 1.444 1.826 1.282 1.274

Texas 0.025 -0.268 -0.562 0.974 0.694 0.837

Mountain

Montana 0.002 0377 -1.720 1.801 1.274 0.958

Id ah o 0.015 .0.088 .0.553 1.612 1.124 0.949

Wyoming 0.015 0.935 1.148 1.805 1341 1326

Colorado .0.111 0.637 0391 1.710 1.249 1.147

New Mexico 0.054 2.117 .0.262 1.894 1.411 1.091

Arizona 0.131 -0.135 -1.122 1.756 1.210 1.050

Utah -0.086 0.495 1.048 1339 0.961 1.201

Nevada .0.016 .0.537 .0.154 1.612 1.130 0.954

Pacific

Washington 0.010 -0.754 0.583 1347 1.060 1.030

Oregon -0.023 -0.615 .0.099 1.780 1.200 0.982

California -0.007 0.485 0.194 0.663 0.468 0.613

Alaska -0.041 0.703 -0.414 1.648 1.238 1.155

Hawaii 0.028 0.242 - 1.112 1.820 1.274 0.937

aA bias is calculated as the difference between the average estimated poverty rate across 1,000 iterations and the "true"
poverty rate.

bA standard deviation is the standard deviation of the 1,000 poverty rate estimates.
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TABLE B.4

BIASES AND STANDARD DEVIATIONS OF SIMULATED ESTIMATES,
BY STATE

Bias' Standard Deviation b

Sample Sample

Division/State Single Pooled Shrinkage Single Pooled Shrinkage

New England

Maine 0.054 2.026 -0.278 1.585 1.221 1.029

New Hampshire -0.008 -0.483 -1.477 1.518 1.051 0.926

Vermont 0.067 1.072 0.573 1.496 1.157 1.109

Massachusetts 0.000 0.147 -0.140 0.772 0.559 0.682

Rhode Island -0.018 0.877 0.667 1.522 1.130 1.200

Connecticut 0.018 1.683 0.226 1.039 0.880 0.938

Middle Atlantic

New York 0.022 0.374 -0.144 0.721 0.496 0.644

New Jersey -0.053 .0.092 0.077 0.732 0.527 0.673

Pennsylvania 0.011 0.134 0.141 0.772 0.569 0.674

East North Central

Ohio 0.016 0.909 0.195 0.837 0.599 0.713

Indian a -0.022 -0.576 -1.345 1.823 1.280 0.928

Illinois 0.003 0.771 -0.237 0.914 0.664 0.734

Michigan -0.017 -0.084 -0.224 0.892 0.614 0.711

Wisconsin -0.062 0.173 1.271 1.405 0.965 1.165

West North Central

Minnesota .0.003 1.850 -0.990 1.688 1.287 0.918

Iowa -0.023 -0.385 -0.001 1.554 1.077 0.963

Missouri -0.001 -0.418 -0.050 1.741 1.182 0.967

North Dakota -0.029 0.276 -0.815 1.514 1.120 0.942

South Dakota -0.031 0.878 -0.544 1.596 1.154 0.980

Nebraska -0.024 - 1.672 -0.857 1.560 1.029 0.901

Kansas 0.040 .0.240 -0.132 1.562 1.118 0.938

South Atlantic

Delaware 0.004 -1.661 0.125 1.636 1.076 0.962

Maryland -0.034 0.453 0.296 1.593 1.149 1.001

District of Columbia 0.050 .0.337 -Z 126 2.394 1.606 1.239

Virginia -0.020 -1.157 -0.210 1.476 0.986 0.942

West Virginia 0.057 1.858 -0.023 1.930 1.378 1.103

North Carolina 0.036 0.822 0.538 0.888 0.637 0.785

South Carolina -0.052 -1.876 -0.105 1.804 1.219 1.012

Georgia -0.082 0.192 0.025 1.829 1.347 1.021

Florida 0.056 1.171 0.293 0.824 0.596 0.750
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TABLE B.5

FREQUENCY DISTRIBUTIONS OF ABSOLUTE BIASES,
BY ESTIMATOR

Number of States

Absolute Bias Sample
(Percentage Points) a Single Pooled Shrinkage

0.0 - 0.1 48 4 8

0.1-0.2 3 5 9

0.2-0.3 0 4 9

0.3-0.5 0 10 1

0.5 - 0.7 0 5 9

0.7-1.0 0 8 4

1.0-1.5 0 6 8

1.5-2.0 0 6 1

2.0-2.5 0 2 2

> 2.5 0 1 0

aThe common boundary of two intervals falls in the lower interval. Thus, "0.1' falls in the '0.0 - 0.1"
interval, not the "0.1 - 0.2" interval.
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TABLE B.6 (cominued)

Percentage of All 95-Percent Confidence Intervals
Including the True Value

Sample

Division/State Single Pooled Shrinka[_e

East South Central

Kentucky 94.1 88.0 98.4

Tennessee 95.6 95.8 97.0

Alabama 94.6 88.0 98.8

Mississippi 94.8 59.6 94.9

West South Central

Arkansas 95.6 91.8 98.9

Louisiana 94.9 93.2 80.3

Oklahoma 95.1 853 81.4

Texas 95.7 94.1 91.2

Mountain

Montana 94.4 94.2 75.8

Idaho 93.7 94.8 95.6

Wyoming 94.3 88.9 88.8

Colorado 93.9 91.8 96.1

New Mexico 94.3 66.4 97.8

Arizona 96.4 95.8 89.5

Utah 93.0 92.5 83.2

Nevada 93.4 91.6 97.5

Pacific

Washington 95.0 88.2 96.0

Oregon 94.9 92.4 97.8

California 94.7 83.2 94.9

Alaska 96.1 91.8 96.2

Hawaii 94.3 94.8 91.7
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